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SUR CERTAINES GENERALISATIONS
DE L’EQUATION DE THUE-MAHLER

par K. GYORY

Dédié & Monsieur le Professeur Kurt Mahler

1. INTRODUCTION

Soient L un corps de nombres algébriques de degré / > 1, Z,, son anneau
des entiers, et K une extension de degré n >3 de L. Soient B, my, ..., 7
(s >0) des entiers algébriques non nuls dans L et d > 1. Supposons
(m,) = p?L, ol h; désigne le nombre de classes de L, py, ..., P, sont des
idéaux premiers distincts avec normes N (p;) = pliet py, ..., ps sont des
nombres premiers < P. Pour chaque a« €K, notons « = o, ..., a™ les
conjugués de « sur L. Soient «y, ..., o, m > 2 entiers algébriques non nuls
dans K. Comme il est connu (voir par ex. [1]),

F(xla-“:xm) = NK/L(a1x1+...+Omem) = H ((xgi)xl_}_”._}_ag)xm)
i=1

est une forme de degré n a coefficients dans Z;. Supposons F irréductible
sur L. De nombreux problémes de théorie des nombres conduisent a la
recherche des solutions xq, ..., X,, € Z;, z4, ..., z; € Z de I’équation

(1) Ny (agXq + .o ox,) = payl..ne, N ((x4, e X)) < d

Quand m =2 et L = Q, (1) est justement I’équation de Thue-Mahler
et, d’aprés un célébre théoréme de Mahler [12], [13], (1) n’admet qu’un
nombre fini de solutions. Pour certaines généralisations voir Parry [14]
et Schlickewei [15]. Ces théorémes de Mahler, Parry et Schlickewei ne sont
pas effectifs, 1.e. leurs démonstrations ne fournissent aucun algorithme pour
déterminer les solutions. En utilisant la méthode de Baker, A. Vinogradov et

Sprindzuk [20], Coates [2], [3], Sprindzuk [17], [18], [19], Kotov [10], Kotov

et Sprindzuk [11] et Gydry [4], [6] ont obtenu des bornes effectives pour les
solutions de I’équation de Thue-Mahler. Les résultats de [10], [11], [4] et
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[6] sont valables sur des corps de nombres algébriques L quelconques.
Pour m > 2, [4] et [6] contiennent, sous certaines hypothéses faites sur
01, ...y Uy, des majorations effectives pour les solutions de (1). Dans cet
article nous donnons des généralisations communes des résultats effectifs
mentionnés ci-dessus et de certains théorémes effectifs [8], [9] obtenus dans
le cas s = 0. Notre principal résultat a plusieurs applications. Certaines
d’entre elles seront publiées dans [7].

2. ENONCES DES RESULTATS

Soient L, K, f§ et n, ..., t, comme plus haut. Supposons ] <bet
max [, ]<Z (>2) ([« ] désigne la maison d’un nombre algébrique o,

l=i<s

i.e. le maximum des valeurs absolues des racines du polyn6me minimal
de « sur Z). Pour s = 0 soit P = & = 2. Soient Dy le discriminant de K,
et G une extension galoisienne de L contenant K. Désignons par A et Rg
(resp. iy et R;) le nombre de classes et le régulateur de G (resp. de L).
Posons [G: Q] = g, [G : L] = fetsoit rle nombre des unités fondamentales
de G.

Nous disons que les nombres ay, ..., o, € K (m >2) sont connexes par
rapport & K/L si le systéme % des formes linéaires /¥ (x) = a{? x, + ...
-+ ocf,f) X, I = 1,..,n, est connexe; i.e. si pour tout i # j, 1 <i, j <n,
il existe une suite /) = 70D [ =[]0 dans & telle que A';, [P
+ A 180 e £ avee 15y, 21,41 €Q\ {0}, n=1, ., v—1 (cf. [8],
[4] ou [6]).

ExeMPLE 1. Il est évident que si m = 2, 0 # a; €L et K = L(a,),
alors oy et o, sont connexes par rapport a K/L.

EXEMPLE 2. Si K = L (2, ..., ,) avec [L(x):L] = n; >3, i = 2,
.., m, et n, ...n, = n, alors, d’apres le Lemme 4 de [8], les nom-
bres 1, a,, ..., «, sont connexes par rapport a K/L.

Soit

C = (25 (F+Sf+3) g)k(24(r+2)+sf(2r+ 13)) RZ(hLIOg l@)3k—2 .
(| Dk [ (log | D )Y~ (P? (log P)” Rg log® (Rghe)): .
.(Rg+ hg log P)ks/+2)
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