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SUR CERTAINES GÉNÉRALISATIONS

DE L'ÉQUATION DE THUE-MAHLER

par K. Györy

Dédié à Monsieur le Professeur Kurt Mahler

1. Introduction

Soient L un corps de nombres algébriques de degré / 1, ZL son anneau

des entiers, et K une extension de degré n > 3 de L. Soient ß, nu ns

(s > 0) des entiers algébriques non nuls dans L et d > 1. Supposons

(n ß plL, où hL désigne le nombre de classes de L, p1? ps sont des

idéaux premiers distincts avec normes N(p;) p{1 et pt, ...,ps sont des

nombres premiers <P. Pour chaque oc eK, notons oc a(1), oc(w) les

conjugués de oc sur L. Soient al5 am m > 2 entiers algébriques non nuls

dans K. Comme il est connu (voir par ex. [1]),

n

F(xt,...,xJ Nk/l (a1x1+...+<xmxm)n
i= 1

est une forme de degré n à coefficients dans ZL. Supposons F irréductible

sur L. De nombreux problèmes de théorie des nombres conduisent à la
recherche des solutions xu xm g Zl, z1? zs g Z de l'équation

(1) V(Vi + -+WJ ßnl1 ...tz'ss, iV((x1; <

Quand m 2 et L Q, (1) est justement l'équation de Thue-Mahler
et, d'après un célèbre théorème de Mahler [12], [13], (1) n'admet qu'un
nombre fini de solutions. Pour certaines généralisations voir Parry [14]
et Schlickewei [15]. Ces théorèmes de Mahler, Parry et Schlickewei ne sont
pas effectifs, i.e. leurs démonstrations ne fournissent aucun algorithme pour
déterminer les solutions. En utilisant la méthode de Baker, A. Vinogradov et

Sprindzuk [20], Coates [2], [3], Sprindzuk [17], [18], [19], Kotov [10], Kotov
V

et Sprindzuk [11] et Györy [4], [6] ont obtenu des bornes effectives pour les

solutions de l'équation de Thue-Mahler. Les résultats de [10], [11], [4] et
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[6] sont valables sur des corps de nombres algébriques L quelconques.
Pour m > 2, [4] et [6] contiennent, sous certaines hypothèses faites sur
a1? am, des majorations effectives pour les solutions de (1). Dans cet
article nous donnons des généralisations communes des résultats effectifs
mentionnés ci-dessus et de certains théorèmes effectifs [8], [9] obtenus dans
le cas s 0. Notre principal résultat a plusieurs applications. Certaines
d'entre elles seront publiées dans [7].

2. Enoncés des résultats

Soient L, K, ß et n1, ns comme plus haut. Supposons \ ~ß~] < b et

max | %i | < & (>2) (f~ô~| désigne la maison d'un nombre algébrique a,
1 ^ i ^ s

i.e. le maximum des valeurs absolues des racines du polynôme minimal
de a sur Z). Pour s 0 soit P & 2. Soient DK le discriminant de K,
et G une extension galoisienne de L contenant K. Désignons par hG et RG

(resp. hL et RL) le nombre de classes et le régulateur de G (resp. de L).
Posons [G : Q] g, [G : L] /et soit r le nombre des unités fondamentales
de G.

Nous disons que les nombres ocl9 ocm eK (m >2) sont connexes par
rapport à KjL si le système if des formes linéaires /(l) (x) x± +
+ xm, i 1, n, est connexe; i.e. si pour tout i ^ j, 1 < i, j < n,
il existe une suite /(i) /(ll), l{lv) /0) dans if telle que 2% /(7^)

+ 2%+1 /(V + i> g if avec 2%, 2% + 1 e Q \ {0}, p 1, w - 1 (cf. [8],

[4] ou [6]).

Exemple 1. Il est évident que si m 2, 0 ^ a^L et Z L (a2),
alors ax et a2 sont connexes par rapport à KjL.

Exemple 2. Si K L (a2, O avec [L (oq) : L] nt > 3, z 2,

m, et «2 nm alors, d'après le Lemme 4 de [8], les nombres

1, a2, am sont connexes par rapport à KjL.

Soit

C (25^+^+3) ^)fc(24(r+2)+s/(2r+13)) ,Rl(/zL log ^)3k"2

(| Dk Y'2 (log I Dk I)'»)*-1 (P> (logP)7 log3

.(RG+hG log P)Hsf+2)
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