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SUR CERTAINES GÉNÉRALISATIONS

DE L'ÉQUATION DE THUE-MAHLER

par K. Györy

Dédié à Monsieur le Professeur Kurt Mahler

1. Introduction

Soient L un corps de nombres algébriques de degré / 1, ZL son anneau

des entiers, et K une extension de degré n > 3 de L. Soient ß, nu ns

(s > 0) des entiers algébriques non nuls dans L et d > 1. Supposons

(n ß plL, où hL désigne le nombre de classes de L, p1? ps sont des

idéaux premiers distincts avec normes N(p;) p{1 et pt, ...,ps sont des

nombres premiers <P. Pour chaque oc eK, notons oc a(1), oc(w) les

conjugués de oc sur L. Soient al5 am m > 2 entiers algébriques non nuls

dans K. Comme il est connu (voir par ex. [1]),

n

F(xt,...,xJ Nk/l (a1x1+...+<xmxm)n
i= 1

est une forme de degré n à coefficients dans ZL. Supposons F irréductible

sur L. De nombreux problèmes de théorie des nombres conduisent à la
recherche des solutions xu xm g Zl, z1? zs g Z de l'équation

(1) V(Vi + -+WJ ßnl1 ...tz'ss, iV((x1; <

Quand m 2 et L Q, (1) est justement l'équation de Thue-Mahler
et, d'après un célèbre théorème de Mahler [12], [13], (1) n'admet qu'un
nombre fini de solutions. Pour certaines généralisations voir Parry [14]
et Schlickewei [15]. Ces théorèmes de Mahler, Parry et Schlickewei ne sont
pas effectifs, i.e. leurs démonstrations ne fournissent aucun algorithme pour
déterminer les solutions. En utilisant la méthode de Baker, A. Vinogradov et

Sprindzuk [20], Coates [2], [3], Sprindzuk [17], [18], [19], Kotov [10], Kotov
V

et Sprindzuk [11] et Györy [4], [6] ont obtenu des bornes effectives pour les

solutions de l'équation de Thue-Mahler. Les résultats de [10], [11], [4] et
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[6] sont valables sur des corps de nombres algébriques L quelconques.
Pour m > 2, [4] et [6] contiennent, sous certaines hypothèses faites sur
a1? am, des majorations effectives pour les solutions de (1). Dans cet
article nous donnons des généralisations communes des résultats effectifs
mentionnés ci-dessus et de certains théorèmes effectifs [8], [9] obtenus dans
le cas s 0. Notre principal résultat a plusieurs applications. Certaines
d'entre elles seront publiées dans [7].

2. Enoncés des résultats

Soient L, K, ß et n1, ns comme plus haut. Supposons \ ~ß~] < b et

max | %i | < & (>2) (f~ô~| désigne la maison d'un nombre algébrique a,
1 ^ i ^ s

i.e. le maximum des valeurs absolues des racines du polynôme minimal
de a sur Z). Pour s 0 soit P & 2. Soient DK le discriminant de K,
et G une extension galoisienne de L contenant K. Désignons par hG et RG

(resp. hL et RL) le nombre de classes et le régulateur de G (resp. de L).
Posons [G : Q] g, [G : L] /et soit r le nombre des unités fondamentales
de G.

Nous disons que les nombres ocl9 ocm eK (m >2) sont connexes par
rapport à KjL si le système if des formes linéaires /(l) (x) x± +
+ xm, i 1, n, est connexe; i.e. si pour tout i ^ j, 1 < i, j < n,
il existe une suite /(i) /(ll), l{lv) /0) dans if telle que 2% /(7^)

+ 2%+1 /(V + i> g if avec 2%, 2% + 1 e Q \ {0}, p 1, w - 1 (cf. [8],

[4] ou [6]).

Exemple 1. Il est évident que si m 2, 0 ^ a^L et Z L (a2),
alors ax et a2 sont connexes par rapport à KjL.

Exemple 2. Si K L (a2, O avec [L (oq) : L] nt > 3, z 2,

m, et «2 nm alors, d'après le Lemme 4 de [8], les nombres

1, a2, am sont connexes par rapport à KjL.

Soit

C (25^+^+3) ^)fc(24(r+2)+s/(2r+13)) ,Rl(/zL log ^)3k"2

(| Dk Y'2 (log I Dk I)'»)*-1 (P> (logP)7 log3

.(RG+hG log P)Hsf+2)
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où

Ri max (Rl, e) et Rq max (RG, c).

Avec les notations et définitions données ci-dessus, on a les résultats suivants :

Théorème 1. Avec les notations ci-dessus, soient L ** K0 a K1 <=

a Kk K des corps de nombres algébriques vérifiant [Kt :A^_i] >3,
z=l, k. Soit Mt c= ZK{ un ZL-module avec générateurs de maison

< A' qui sont Kt- ^linéairement indépendants et connexes par rapport à

Ki\Kx_ l9 i 1, k. Si ccl9 um e M1 Mk sont linéairement indépendants

sur L et [~ô7] < AJ 1, m, alors toute solution xu xm e ZL,

z1? zs > 0 <7c (1) vérifie

(2) max(p^, ...,[5^,
< ^mKs+D^y08^ exp | Clog F)}

Pour k 1 cette assertion résulte du Théorème 2 de [6]. Le Théorème 1

généralise, à la forme de la borne près, les résultats de [20], [2], [3], [17], [18],

[19], [10], [11], [8], [9], [4] et [6] qui sont mentionnés dans l'introduction.
Comme il est connu, dans (1) on peut supposer sans restreindre la

généralité que ol1 1.

Corollaire L Supposons que ocl 1, a2,aOT e Zx, |~ôï~~| < ^ A\
Kx L, Kt ^ L(cc2, afi Km K et [Kt :Ki_1]> 3, z 2, m.
Alors toute solution de (1) vérifie (2) avec k m — 1.

Quand s 0, le Corollaire 1 est un cas particulier de notre Théorème 3

dans [8].
Le corollaire suivant est une conséquence immédiate du Corollaire 1.

Corollaire 2. Soient oc1 1, oc2, ocm e ZK vérifiant |~ô7] < ^4

A' et K L (a2, am). Si [L (oq) : L] nt > 3, z 2, m c£

772 ••• nm \K : L], alors toute solution de (1) vérifie (2) avec k m — 1.

Le Corollaire 2 a été démontré, avec une majoration différente de (2),
dans [6].

Si 0 # a e ZL, notons œ (a) le nombre des idéaux premiers distincts
de L divisant a, et P (a) le maximum des normes de ces idéaux. Du
Théorème 1 on peut déduire le

Théorème 2. Soient L, K, d et ccl9 ccm comme dans le Théorème 1,
et soit F(x) NK/L(a1x1 + + amxm). Il existe des constantes effectives

L'Enseignement mathém., t. XXVI, fasc. 3-4. 16
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ct ct (K, L, A, A\ d) > 0, i 1,2, et N0 N0 (K, L, A, A\ d) telles

que

(3) s log (s + 1) + log P > cL log log N

et

(4) P > c2 log log N

pour tout x g Z avec N ((xl5 xm)) < d et N max | NL/Q (xt) |

> A0, où s co(P(x)) et P P(P(x)).
Le Théorème 2 généralise certains récents résultats de Kotov [10] et

Györy [4],

3. Démonstrations

La démonstration du Théorème 1 sera basée sur le théorème ci-dessous.
Avec les notations du paragraphe précédent, on a le

Théorème A. Soit M — {p1, pt] cz ZK un ZL-module. Supposons

p pt L-linéairement indépendants, connexes par rapport à K/L et

max | pj | < A'. Si yeM et

NK/L(y) ßn? ...n/

avec des entiers zt > 0, alors y n"i n"s y\ où uu ...,%> 0 sont
des entiers, /gZk,

m< r
et

Texp { c3 -P9 (log P)5 l°g3 (-Rg log P)sf+2

(log &){Re+ hGlog+ log (A'b)) }
avec

c3 (25 (r + sf +3) g)22r+13sf+2rsf+4-*

Ce théorème est une conséquence *) du théorème 2 du travail [6] (voir
encore la majoration (45) de [4]). Dans la démonstration du théorème 2

de [6], nous avons utilisé la méthode de Baker.

x) Le théorème 2 de [61 est vrai pour toute extension galoisienne de L contenant le
corps de décomposition de F.
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Démonstration du Théorème 1. Démontrons d'abord par récurrence sur k
que ye M Mx Mk et NK/L (y) ß ni1 nzss impliquent y 71"1

nuss y' avec us > 0, où y' g Zk et

(5) |~y~| < n A' exp {(log T)(ni(x+ 1) (log 0>) (log r4))*~1} Uk

avec le T4 défini ci-dessous. Pour k 1 cela découle du Théorème A.
Supposons (5) prouvé pour k — 1 avec A: >2. Posons Kk_ 1 K
[K' : L\ nu [K : K'] n2 et M' M1 Mk_1. Désignons par DK,
et hK' le discriminant et le nombre de classes de K'. Comme

NK/L(y) NK./L(

dans K' on a la décomposition en idéaux premiers

(NK/K,(y)) 0h?-y?),
où ...» iß, sont les idéaux premiers distincts de K' au-dessus de

Pl,..., ps, (o, WO 1, (S) | (/?) («pt (yd et, en vertu
du Lemme 6 de [8] et D]J?| DK, on peut supposer

max pp < exp {(log P) (31 (In y)3 log | DK | )'nl | DK |
1/6 } Ty

i

*
Si (nt,yj) # 1, alors NK-/L(yjL) rinhlK'fj avec <«x et avec une
unité rj eL vérifiant

Pf] < T1nxliLlo*0t T2

Nous avons

(6) nk/k' (y) — ßi (yi)"1 ••• (yq)Uq

avec

y't r,~1y"lhL, ßiônu'+-+u^yd11...ydq",
OÙ

Wj ÙL «;+/•;, 0 < < ÙL, M; ,0 < <
et

di - r{ + hL

Ici pyT| < T]l,iL T'2. En comparant les normes sur des membres de
gauche et de droite de (6), on obtient

I N^nJßJ]<(bBlIT1<'+1)*i)2|(»+1)10«» T3.
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Le Lemme 6 de [8] implique qu'il existe une unité e dans K' telle que

NK'il («B) h ßi s712 ß' et \Y] < r3 Tx.
Par hypothèse on a jy yx \ix + + ytpLt, où y je M', t <ft2>

Iux,...,pit sont X'-linéairement indépendants, connexes par rapport à

K\K' et |~jûT~| < T'. En utilisant le Théorème A, il résulte de (6) que

s~1}; (y'iï1 (y'q)Vqy*,

et, d'après une majoration de Siegel [16] concernant R*K, hK,,

ft*] < exp {(s +1) I hi c3 log (7\ T2) I |1/6 (log | DK |)' Pg.

• (logP)5i?Glog3 (R*GhG)(RG+hG\ogPyf+2 (RG + hG\ogP

+ log (A'b))(log») (log T,)}=
exp {(logr4)(PG + AGlogP+ log } T5

En considérant les conjugués s_1j(,) (c Vi)/'?' + + (e_1Jî)

(/ 1, n2) de s'1 y sur X', on obtient e-1 — (y'x)vi Oy^g oyavec

ï^>0 et <jjE ZK,, où pöy] < T\,j 1, t. Comme

Nk-iL&j) yj) (tt/1 7isvs)nihK' NK,/L((Tj)

avec > 0, d'après l'hypothèse de récurrence nous obtenons

y. Ttpy ...Tts'jyj, wu > 0 yjeZK, et < T6

où T6 coïncide avec Uk_x avec la restriction suivante sur Uk_ x: il faut prendre

Tf1 au lieu de b. Avec la notation w[ min wu nous avons
j

' W W ' rw

yj Kyj, k 7i 11 7t sys e

et [yj]< TÏ'1 (s+1)!log# < uk.
Pour

/ y'iPi+ + y'tPt

on a y ky'etj' vérifie (5).

Si x1;..., xmeZL,zlt..., zs>0 est une solution quelconque de (1), en

considérant les conjugués de a1 xt+ xm y sur L on obtient

Xi k v;/v avec vi;veZG, où

pri < (mA)m [Ü7] < (mAT'1 nA' Uk.
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Comme k|v (xlfx,„),on déduit

| ^ | ^ gp slml log (mA) + log <f]

ce qui implique (2).

Démonstration du Corollaire 1. Considérons les ZL-moduïes Mt — {l,oq},
où l,oq sont Ki_ r-linéairement indépendants et connexes par rapport à

Ki/Ki_ Comme 1, a2, ocme M2 Mm sontL-linéairement indépendants,
le Corollaire 1 est une conséquence simple de notre Théorème 1.

Démonstration du Théorème 2. Soit 0 ^ x e Z avec N((xl9 xm)) < d
et considérons la décomposition de F (x) en idéaux premiers

(7) (F(x))pïC..p^.

Posons p;L (tii) et ut hL zf + avec 0 < rt < hLi i 1, En
vertu de (7) pi1 (/?) est un idéal principal dans L, et on a

(8) E(x) nßn\l...7izss

avec une unité y eL convenable. D'après le Lemme 3 de [5], on peut supposer
que

7i71<-PAL/V4

De plus, d'après ce lemme rj ß e n ß1 avec une unité seL et avec un
ß i e ZL vérifiant

où c4 c4 (L) est effectivement calculable. (8) implique

(9) F (ex) &JTÎ1

Nous pouvons maintenant appliquer le Théorème 1 à (9), et nous obtenons

(10) max |13q] < exp {c5(c6(s + 1))c7 <s+1> pc8
_

1 ^ i ^ m

(log P)C" <s+1>}

avec des constantes effectives c5 c5 (if, L, A, A', d) et c{ ct (.K, L),
6 < i< 9.

Il est évident que

(n) |^r/aM<r^!, «
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De plus, d'après un théorème bien connu

(12) s < 2/ P/log

Donc, si N0 est assez grand, alors en vertu de IV max | Nl/q (x;) | > 2V0,
i

(10), (11) et (12), P est également grand et (10) entraîne

(13) s log (s + 1) + log P + s log log P > cn log log N

avec une constante effective cXQ c10 (K,L, A, A\ d) > 0. Comme

s log log P < 2 max (s log (5 -F 1), log P),

(3) résulte de (13). Enfin, (3) et (12) impliquent (4).
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Note ajoutée aux épreuves. 1. En utilisant le théorème 1 de mon article « On the
representation of integers by decomposable forms in several variables » (à paraître) au
lieu du Théorme A, on peut aisément majorer, sous les hypothèses du Théorème 1, les
solutions de (1) en entiers xi, xm d'un corps de nombres quelconque.

2. Dans mon travail « Sur une généralisation de l'équation de Thue-Mahler » (C. R.
Acad. Se. Paris 290 (1980), 633-635), C doit être remplacé par la constante C ci-dessus.
Dans ses corollaires 1 et 2, il faut prendre k ~ m — 1, et il faut supposer K =L (a2 am).

Kaiman Györy
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Institut de Mathématiques
4010 Debrecen
Hongrie
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