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En faisant le changement de variable 72 = u y?, il vient

\/Eoc.

Vy>1) | e®g(Ju)du = >
0 y
L’injectivité de la transformation de Laplace implique donc ’égalité

(26) g (Ju) = 2o0/u

pour presque tout réel positif u. Comme g est croissante, on voit finalement
que (26) a lieu pour tout u.

Nous avons donc montré que, de toute suite d’entiers tendant vers + oo,
on peut extraire une sous-suite (m1;) telle que (g,,,) tende simplement vers la
fonction ¢ > 2az. Cela implique la conclusion annoncée.

6. LE CONTRE EXEMPLE

Nous nous proposons ici d’établir le théoréme 5.
Soit ¢ > (¢) une fonction réelle tendant vers -+ co; nous pouvons sans
restreindre la généralité supposer que y est croissante et que ’on a:

[ ) =1
- (O = o)
lim sup K(Zf)— < 4+
{ t—o0 lp(t)

Définissons alors une suite de nombres réels par

3 3
| —1//(%—) si —m3/zt//<%)“1<n—m3 <0
m> n3\ "1
(Vn>2)a, =1 -I—lﬁ(—i) si O<n——m3<m3/2t//<%>
. 3 m3\"1
| 0 si. (VmeN) [n—m?| > m*?y > -

I1 est clair que I’on a pour tout entier n > 2

<Y (n).

[ an
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De plus, pour toute constante positive ¢, on a:
a, = m>/? (1 +0 (1)) ’
m3 éném3 + cm3/2
on voit donc qu’il n’existe aucun réel « tel que 'on ait
(Ve >0) Y a, = ca\/x+0(/x).
X =n<x-+ c«/?c

Il reste & montrer que a, tend vers 0 au sens de Borel.
Puisque a, = o (1/n) il suffit de montrer (cf. [6]) que pour m tendant
vers I'infini on a:

(28) I/iﬁ_h:iw A, in EXP {— E_} = 0(1)

~ w 2m
ou I’on a posé a = Qpourm + h < 0.
p m-+h

Comme a, = O (Y (n)) on vérifie facilement la majoration

S | apen] exp {_ _”_}

1
\/% |hl>*/;¢(m)% 2n’l

|
= 0<lﬁ(m) exp { — 5\/¢(m)}> = o0(1).

Or lintervalle [m — /my (m)'/*, m ++/my (m)'/*] contient, pour m
assez grand, au plus un cube k*; on voit donc que (28) est une conséquence
de

lim sup |F(m,k)] =0,
k= m— k3] <2k3/2y k3) F ‘
avee
1 (k? —m +h)?
F(m,k) = —= a3 exXpld — — )
\/m ]k3_m+hlék3/2¢,(k3)1/4 2 m

On a pour | m — k*| < k32 ¢ (k%)F — k32 (k3/2)™*

F(m,k) = (1+o0(1)) % exp {— %(—If;—m)-} X
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h? k3 —m
x ) exp { - #} [exp { o L___L}
0<h=<k3/2y&3/p ~1 2m m

h(k>—m)] |
]

exp { = hgf—};—@} = exp {OWE) M} = 1+ 0(D),

comme

la conclusion en découle.
Pour |m — k3| > k*2y (k*)* — k¥?§ (k3)2)"", on a trivialement

F(m,k) = O <exp {— (% +o0 (l)) JW}) = o0 (1), ce qui achéve la dé-

monstration.
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