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D’autre part, puisqu’aucun des x, (k= +1, +2,...) n’appartient a Dinter-
valle [x — 1, x] la formule de la moyenne implique

*k+1

Vik(—-m<k<m-1,k+#—1,0) H (p(x,t)dA(t)l
p;

< @ (X, Xgpp) sup l A — AXerp) l

X =t=Xp 4+ 1

aveci = 1sik>1leti =0sik << —2.
D’apres (6) on a donc:

*k+1

Vk(—-m<k<m-1,k#—1,0) |j qn(x,t)dA(t)[
== 0(\/_>E(P(x:xk+i))

d’ou, en utilisant I’assertion (i) du lemme 1,

*k+ 1
(10) i 4;;:4 , | @ (x, 1) dA (1) |
, =
:o(_ ékz -lexp{-—j(l—i—o(l))})
_ ot k#—1,0

En reportant (10) et (9) dans (8), on obtient I; + I; = o (1), ce qui achéve
la démonstration.

5. LE RESULTAT TAUBERIEN

Dans cette section, nous nous proposons d’établir le théoréme 4. Nous
supposerons, dans toute la démonstration, A réelle et croissante; grace au
théoréme 3, le cas général se déduit aisément de ce pas particulier.

Nous noterons ¥, I'ensemble des fonctions réelles croissantes, définies
sur ’ensemble des réels positifs ou nuls et prolongées par 0 sur I’ensemble
des réels négatifs.

Les méthodes de démonstration que nous utiliserons sont fondées sur
des idées de Hardy et Littlewood ([6], [7]) dont on trouvera un exposé¢ dans
le chapitre 9 de [5]. En particulier, le point crucial consiste & appliquer au
bon moment le théoréme de Vitali, que nous énongons pour mémoire:
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Soit O un domaine du plan complexe et (f,) une famille de fonctions holo-
morphes sur O, bornée pour la topologie de la convergence sur tout compact
de O et convergeant vers une fonction holomorphe f, définie sur O, sur une
suite de points ayant un point d’accumulation dans 0. Alors (f,) converge
vers f uniformément sur tout compact de 0.

LEMME 3. Pour toute fonction A de ¥ ., les conditions suivantes sont
équivalentes :

3) [ oG, 0dA®) = a + o(1)
0
1 + o0 h2
(11) V%J_mexp{—z}dA(x—}-h\/x) =a+o0(l).

Dans [6], Hardy et Littlewood ont montré I’équivalence des conditions (3)
et (11) dans le cas ou A (¢) est la fonction sommatoire d’une suite
a, = o(+/n); Hyslop [8] a généralisé ce résultat au cas olia, = O (n¥)
pour un réel arbitraire K. Bien que le résultat du lemme 3 ne soit pas une
conséquence de ces travaux antérieurs, la démonstration ne met en ceuvre
aucun moyen nouveau; nous nous contenterons d’exposer les grandes
lignes de la preuve de I'implication (3) = (11), le lecteur n’aura aucune
peine, s’il le désire, & compléter la démonstration.

Comme la mesure dA4 (¢) est positive on a
x+Vx

| 0e0ddD <] ¢(0dd®) = 0,

X

et comme, d’apres le lemme 1, il existe une constante positive a telle que

a
NES

I'on ait pour x assez grand et 7 dans [x, x +4/x], ¢ (x, 1) > on voit

que

A +x) —AKx) =0 (V%) .
Maintenant il est facile d’en déduire que I’on a uniformément pour y >4/x
(12) Ax+y) — A(x) = 0(y),
et en particulier

(13) AX) = 0(x).
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1 2
Soit alors & un réel fixé dans l’intervalle ]E’ 3—[ ; on déduit de (13)

et des estimations du lemme 1 la majoration

[ e PE0dA0 = o
t—x | >x
d’ou finalement:
[ oG, 0)dA@) = | ¢ (x,)dA(t) + o(1)
Y ]t—x]<x§
1 1(t—x)2}
S exp { — — dA(f) + R
J2nx ]jt—x]<x€ { 2 X ® '
+ Ry + 0(1)
avec
1 14]t— 1 (t—x)?
R, =0 <—J »il—_-x—lexp {-— _S_ﬂ} dA(t)>
X Jx 2 x
|t—x | < x&
et
1 |t —x|? 1(t—x)>2
R, = O(;J TP exp{-—z " }dA(t)).
|t— x| <=x5

Comme dA () est positive et que les fonctions hw|#h| e h¥2 et
h | h|® e™"*2 sont bornées sur la droite réelle, on voit que R; et R, sont

o (A(x +x°) — A(x —x%)

) , c’est-a-dire o (1) d’apres (12).
X

En remarquant finalement que

1 1 (t —x)>
\"/ij exp { - 5“ xx) }dA(t) — o(1),

on obtient la conclusion souhaitée.
Le résultat suivant est ’analogue d’un théoréme de Hardy et Little-
wood ([6], théoréme 4.3).

[t—x[>x'§

LeMME 4. Soit A une fonction de v .. Sil’intégrale

(14) AG) = y“j) e~ dA (1)
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converge pour y > y,, alors elle définit une fonction analytique de 'y sur
l’intervalle 1y,, + o[, on a pour tout y > y, et tout entier non négatif n

a'4 s EO (=" te ¥ (n—ty)dA(Y)

0]

et, pour tout réel positif k, les deux assertions suivantes sont équivalentes :

(i) lintégrale (14) est convergente pour tout réel positif 'y et l'on a

(¢ 0] ( k)n d"A
15 — (k) =
(15) ngo n! dy" (k) =«
(i1) om a pour x infini
D +w
k kh? _
(16) \/énx J exp {— -2} dA(x +hyx) = o + o(1)

- 0

Démonstration. Les deux premiéres assertions concernant 'intégrale (14)
constituent un résultat classique sur la transformation de Laplace-Stieltjes
(voir par exemple Widder [10], chapitre II, §5).

Supposons maintenant que A satisfasse a la condition (i). On a

io S ij R Z R iyt etk da
- dm k] e Z te—n) & )n dA (1)
v o 0 n=0
Y T v (ki Tt (k)"
) vlinzo kg : { nm1(n—1)1 Z_ }dA(t)
_ dim k| e ® )dA()

En posant ¥ (x, 1) = k ¢ (tk, v) pour v = [k x], on voit donc que (15)
équivaut a

(17) I W(x, ) dA(f) = o + o(1).

1 2
Un réel ¢ étant fixé dans I'intervalle ]5, 2 {, on verifie que 1’on a pour

|t—x| < x°




240 —

(18) Y (x,1) = i exp {-— k y (t—x)2}<1+0<]t—2x|3>> .
2Ix 2 X X

x+vx
Comme (17) implique que lintégrale | Y (x,1) dA4 (t) est bornée on

X

en déduit, comme dans la démonstration du lemme 3, la majoration

(19) Ax) = 0(x);
cela implique
|} éw (x,)dA() = o(1),
[t——x[éx
1  k(t—x)* _ (1
jilt—xl>x§exp {_5 & }dA(t) 7

et finalement (16), en utilisant (I18) et le changement de variable
t = x + hy/x.

Pour établir 'implication réciproque (ii) = (i), il suffit de remonter Ies
calculs précédents, apres avoir remarqué que (16) implique (19) et donc la
convergence de I'intégrale (14) pour tout y positif.

LEMME 5. Soit A une fonction de V" .
Si A vérifie (16) pour un nombre réel positif k, il en est de méme pour
tout nombre k' satisfaisant a l’inégalité 0 < k' < k.

Démonstration. On utilise I’équivalence énoncée au lemme 4; le résultat
est une conséquence immédiate du théoréme suivant, di a Hardy et Little-
wood [6]:

Si la série entiere

FG) =3 up

n=0
converge en un point x, de son cercle de convergence et si 0 appartient a
10, 1[, alors la série de Taylor de f(0x,+ (1—6) x,), soit

@ 1 dn
20 e

(0x,) {(1=0)x, }",

n! dx"
converge également vers f (x,).

11 suffit, en effet, d’appliquer le théoréme a la série entiére définie pour
]xl < 1 par
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0 (__k)ndnA(k) )
- X

J () nZ:0 nl dy

qui converge en x, = 1.

Comme A est analytique sur ]0, + co [, on a pour tout x dans ]O, 1 [

fx) = A(k(1-x)
et donc, en posant k& = k (1—0),

dnf dnﬁ
0) =(— k)" — (k') .
a0 =(=0 dy,,(c)

Le résultat en découle, en remplagant dans (20).

Nous pouvons maintenant aborder la derniére étape de la démonstra-
tion du théoréme 4.

Soit donc 4 une fonction de ¥, satisfaisant a (3). Nous allons montrer
que la suite de fonctions (g,,),,~. 1 définie par

(VmeN*, Vi>0) g, = :/1: {A(m+t/m) — A(m—t/m)}
m

converge simplement vers la fonction ¢ + 2uf; la croissance de 4 permettra
alors d’en déduire (1).

1
D’apres les lemmes 3 et 5, on a, pour tout réel k£ de l’intervalle—JO, 5[,

lorsque m tend vers I'infini

— + o

1) K f exp { —kh2}dA(m+hJm) = a + o(1).
mTm -

De plus, comme la mesure dA4 (t) est positive, la suite des fonctions définies
sur le demi-plan 4" = {ze C : Rez > 0} par

(22) fo(2= [~ ;wexp { —zh*}dA(m+h/m)

Tm -
est bornée pour la topologie de la convergence uniforme sur tout compact
de A. Comme f,, (z) tend vers o pour z = k e ]O,%[, le théoréme de
Vitali implique
(23) (Vzed') fn(2) =a+o0(1).
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En intégrant par parties I'intégrale figurant au second membre de (22), la
relation (23) devient:

2,312

(Vzex) }O hg,(h) exp { —zh*}dh = \/— +o0(1).

Soit y un réel positif; prenons z = y 2 et effectuons le changement de variable
= hy, on obtient:

(24) (Vy>0) }O tg, <_t_> e P dt = “\7 +0(1).
0 y 2y

En particulier, il existe une constante positive M telle que ’on ait pour m
assez grand

e}

[ tgn@®edt <M

0

Comme g,, est positive et croissante en ¢, cela implique

(V2>0) g, <M{| te*dt}™! = 2Me™.

t
La famille des fonctions ¢t — tg,, (—) e~ est donc, pour chaque y fixé supé-
y

rieur a 1, majorée par une fonction intégrable pour la mesure de Lebesgue.
Maintenant, de toute suite d’entiers tendant vers l'infini, on peut
extraire, par un procédé diagonal, une sous-suite (m;) telle que la suite
(9m,)i=o converge simplement sur I'ensemble des rationnels positifs vers
une fonction g, définie sur Q. et croissante. On peut la prolonger en une
fonction croissante définie sur I’ensemble des réels positifs et continue a
gauche. Notons encore g ce prolongement. L’ensemble D des points de
discontinuité de g est dénombrable et, pour tout réel positif ¢ n’apparte-
nant pas & D et tout couple (7, s) de rationnels tel que r < ¢ < s, on a:

(Viz0)  gu,(r) <gm; () <G, (5) .

En faisant tendre i vers I'infini puis r et s vers ¢, on voit que (g,,,) converge
vers g presque partout. On peut donc appliquer le théoréme de Lebesgue

: I\ _ , f e :
a la suite des fonctions > 1 g,,. <—> e t? pour y fixé€ supérieur a 1; on obtient
y

(25) (Vy>1) Of te"’zg <~t-> dt = vre .
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En faisant le changement de variable 72 = u y?, il vient

\/Eoc.

Vy>1) | e®g(Ju)du = >
0 y
L’injectivité de la transformation de Laplace implique donc ’égalité

(26) g (Ju) = 2o0/u

pour presque tout réel positif u. Comme g est croissante, on voit finalement
que (26) a lieu pour tout u.

Nous avons donc montré que, de toute suite d’entiers tendant vers + oo,
on peut extraire une sous-suite (m1;) telle que (g,,,) tende simplement vers la
fonction ¢ > 2az. Cela implique la conclusion annoncée.

6. LE CONTRE EXEMPLE

Nous nous proposons ici d’établir le théoréme 5.
Soit ¢ > (¢) une fonction réelle tendant vers -+ co; nous pouvons sans
restreindre la généralité supposer que y est croissante et que ’on a:

[ ) =1
- (O = o)
lim sup K(Zf)— < 4+
{ t—o0 lp(t)

Définissons alors une suite de nombres réels par

3 3
| —1//(%—) si —m3/zt//<%)“1<n—m3 <0
m> n3\ "1
(Vn>2)a, =1 -I—lﬁ(—i) si O<n——m3<m3/2t//<%>
. 3 m3\"1
| 0 si. (VmeN) [n—m?| > m*?y > -

I1 est clair que I’on a pour tout entier n > 2

<Y (n).

[ an
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