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D'autre part, puisqu'aucun des xk(k= ± 1, +2,...) n'appartient à l'intervalle

[x - 1, x] la formule de la moyenne implique

** + i
Vfc(-m<fc<ro-l,fc#-l,0) |J <p(x,t)dA(t)\

xk

< <P (x, xk+i)sup| (t) |

Xk^t^Xk+ 1

avec z 1 si k > 1 et z 0 si k < - 2.

D'après (6) on a donc:

xk + l
Vfc( — m < k < m — 1, fc # — 1, 0) |J <p(x, 0^,4(0 |

Xk

o{^Jxcp(x,xk+ù)

d'où, en utilisant l'assertion (i) du lemme 1,

(to) X! |J ç> Cm) <£<4 (0 j

* * -1,0

"( z exp | - (1+0(1)) 1)
fc^-1,0

0(1).

En reportant (10) et (9) dans (8), on obtient I± + /3 o (1), ce qui achève

la démonstration.

5. Le résultat taubérien

Dans cette section, nous nous proposons d'établir le théorème 4. Nous

supposerons, dans toute la démonstration, A réelle et croissante; grâce au
théorème 3, le cas général se déduit aisément de ce pas particulier.

Nous noterons iA + l'ensemble des fonctions réelles croissantes, définies

sur l'ensemble des réels positifs ou nuls et prolongées par 0 sur l'ensemble
des réels négatifs.

Les méthodes de démonstration que nous utiliserons sont fondées sur
des idées de Hardy et Littlewood ([6], [7]) dont on trouvera un exposé dans

le chapitre 9 de [5]. En particulier, le point crucial consiste à appliquer au
bon moment le théorème de Vitali, que nous énonçons pour mémoire:
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Soit (9 un domaine du plan complexe et (/„) une famille de fonctions
holomorphes sur (9, bornée pour la topologie de la convergence sur tout compact
de (9 et convergeant vers une fonction holomorphe f définie sur (9, sur une

suite de points ayant un point d'accumulation dans (9. Alors (/„) converge

vers f uniformément sur tout compact de (9.

Lemme 3. Pour toute fonction A de 7^+, les conditions suivantes sont

équivalentes :

(3) j cp(x,t)dA(t) a + o(l)
o

1 +co r h 2 *

ai) -v-

f 1

exp < — — > dA (x + h^jx a -f o (1)

Dans [6], Hardy et Littlewood ont montré l'équivalence des conditions (3)
et (11) dans le cas où A (t) est la fonction sommatoire d'une suite

an o{<\/n)\ Hyslop [8] a généralisé ce résultat au cas oùa„ O (nK)

pour un réel arbitraire K. Bien que le résultat du lemme 3 ne soit pas une
conséquence de ces travaux antérieurs, la démonstration ne met en œuvre
aucun moyen nouveau; nous nous contenterons d'exposer les grandes
lignes de la preuve de l'implication (3) => (11), le lecteur n'aura aucune
peine, s'il le désire, à compléter la démonstration.

Comme la mesure dA (t) est positive on a

X + qX CO

j cp (x, t) dA(t)<| <p(x,t)dA(t) 0(1),
X 0

et comme, d'après le lemme 1, il existe une constante positive a telle que

l'on ait pour x assez grand et t dans [x, x + <\/x], cp (x, t) > on voit
V*

que

A(x+^Jx)- A(x)OQx)

Maintenant il est facile d'en déduire que l'on a uniformément pour y

(12) A(x +y) - A(x) =0 (y)

et en particulier

(13) A(x) =0 (x).
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Soit alors £ un réel fixé dans l'intervalle

et des estimations du lemme 1 la majoration

1 2

2' 3
; on déduit de (13)

d'où finalement:

00

J <p(x,t)dA(t) I

J (p(x,t) dA(— o(l)
| t- X [ >X%

1t - X ] <

1
J

cp (x, t)dA(0 + o (1)

l(f-x)2
V2?IX \t-x\<xi

+ ^2 + 0 (1)

exp J - 2 x

avec

et

Ri O

R2 O

1 + \t —x I

exp < — —

1 (t —x)2

2 x

dA (t) -f- Ri

dA(t)

11 - X j <

Hrexp{...
x3/2 P 1 2 x

1 t— x)2
dA(t)J

| t — x | < ;

Comme dA (t) est positive et que les fonctions h i-> | h | e
h 2/2 et

h h-> | h |3 e~h2/2 sont bornées sur la droite réelle, on voit que R± et R2 sont

0 |
A<-X+X'>

„ (y d.aprSs (12).

En remarquant finalement que

1 1 (t—x)2)
CXP ^ ~ 2—x—1

dA °^
I ' ~ * | > xi

on obtient la conclusion souhaitée.

Le résultat suivant est l'analogue d'un théorème de Hardy et Little-
wood ([6], théorème 4.3).

Lemme 4. Soit A une fonction de ir+. Si l'intégrale

(14) A (y) yI e tydA (0
0
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converge pour y > y0, alors elle définit une fonction analytique de y sur

l'intervalle ] ya, +00 [, on a pour tout y > y0 et tout entier non négatif n

A

t4 00 J (-tf1 e-,y (n -ty) dA(t)
cl y 0

et, pour tout réel positif k, les deux assertions suivantes sont équivalentes :

(i) l'intégrale (14) est convergente pour tout réel positif y et l'on a

(15)

(ii) on a pour x infini

+ 00

(16)

" - k)"V (k) a
,,=o n

k

2tix
exp

kh2

2~ dA(x +hyjx) a + o(l)

Démonstration. Les deux premières assertions concernant l'intégrale (14)
constituent un résultat classique sur la transformation de Laplace-Stieltjes
(voir par exemple Widder [10], chapitre II, §5).

Supposons maintenant que A satisfasse à la condition (i). On a

A
00 _ ]An dn A v

— JAn 00

£ —PÇ» </0 lim S —1 I (-ty-H-*(n-tk)dA(t)
n 0 ft • dy v 00 n— 0 ft • 0

00 v (ktY*1
lim k J e~tk (tk—n) dA (t)

v -»• oo 0 77 0 ft •

v ->• 00 0 i (n — 1) n=0 n
00 (fctV

lim k J e~tk dA (t)

En posant \j/(x, t) k cp (tk, v) pour v ~ [k x], on voit donc que (15)
équivaut à

00

(17) j 1jf (x, t) dA (t) a + 0 (1)
0

11 2
Un réel Ç étant fixé dans l'intervalle

2' 3
on vérifie que l'on a pour

\t—x\ < xç
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(1S) *M " Jé exp {" -2
' ^K1*0^)) '

X + V X

Comme (17) implique que l'intégrale J \j/ (x, t) dA (t) est bornée on

en déduit, comme dans la démonstration du lemme 3, la majoration

(19) A(x) 0(x);
cela implique

J dA (t)o(l),
| t - X | ^

i r r k(t—x)2)-,expi-- =o(l)
VX \t-x\(. 2 X J

et finalement (16), en utilisant (18) et le changement de variable

t x + h<\/x.
Pour établir l'implication réciproque (ii) => (i), il suffit de remonter les

calculs précédents, après avoir remarqué que (16) implique (19) et donc la

convergence de l'intégrale (14) pour tout y positif.

Lemme 5. Soit A une fonction de ir+.
Si A vérifie (16) pour un nombre réel positif k, il en est de même pour

tout nombre k' satisfaisant à l'inégalité 0 < k' < k.

Démonstration. On utilise l'équivalence énoncée au lemme 4; le résultat
est une conséquence immédiate du théorème suivant, dû à Hardy et Little-
wood [6]:

Si la série entière
00

f (x)Z un
n 0

converge en un point x0 de son cercle de convergence et si 6 appartient à

]0, 1 [, alors la série de Taylor de f(9x0+ (1 - 0) x0), soit

00 1 dnf
(20) I — -4 {OxJ{(l-0)xoy,

n 0 ni dxn

converge également vers f (x0).

Il suffit, en effet, d'appliquer le théorème à la série entière définie pour
| x | < 1 par
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n _ o Yi ay

qui converge en x0 1.
A

Comme A est analytique sur ] 0, + oo [, on a pour tout x dans ] 0, 1 [

fix) A(k(l-x))
et donc, en posant k' k (1 — 6),

dnf dn A
Yi(0)=i-kr — (ifc').
dx" dy

Le résultat en découle, en remplaçant dans (20).

Nous pouvons maintenant aborder la dernière étape de la démonstration

du théorème 4.

Soit donc A une fonction def + satisfaisant à (3). Nous allons montrer

que la suite de fonctions (gm)m^i définie par

(VmeN* \/t> 0) gm(t) —i= {A (m + tJ m) — A (m —tJ m)}
V m *

converge simplement vers la fonction t \-> 2at; la croissance de A permettra
alors d'en déduire (1).

M-D'après les lemmes 3 et 5, on a, pour tout réel k de l'intervalle

lorsque m tend vers l'infini

(21) jjl_ j exp { — kh2 } dA(m+h sjm) a + o (1)
V k m - oo

De plus, comme la mesure dA (t) est positive, la suite des fonctions définies
sur le demi-plan JT {z e C : Re z > 0} par

I + OO

(22) fm(z)/— J exp { -z
V 7i m - oo

est bornée pour la topologie de la convergence uniforme sur tout compact

de X. Comme fm(z) tend vers a pour z k e Jo,^, le théorème de

Vitali implique

(23) (VzeJf) fm(z) a + o(l).
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En intégrant par parties l'intégrale figurant au second membre de (22), la
relation (23) devient:

CO /

(VzeX) | hgm(h)exp{ -zh2}dh+ o(l).

Soit y un réel positif; prenons z y
2 et effectuons le changement de variable

t hy, on obtient:

(24) (Vy > 0) | tgmf-\e~t2 dt
o \yj 2

En particulier, il existe une constante positive M telle que l'on ait pour m
assez grand

°°

J tgm(t) e~'2 dt < M
0

Comme gm est positive et croissante en t, cela implique

00

(Vt > 0)

La famille des fonctions t -* tgm - e
'2 est donc, pour chaque y fixé supé-

\yj
rieur à 1, majorée par une fonction intégrable pour la mesure de Lebesgue.

Maintenant, de toute suite d'entiers tendant vers l'infini, on peut
extraire, par un procédé diagonal, une sous-suite (mi) telle que la suite

(gm.)i^0 converge simplement sur l'ensemble des rationnels positifs vers

une fonction g, définie sur Q+ et croissante. On peut la prolonger en une
fonction croissante définie sur l'ensemble des réels positifs et continue à

gauche. Notons encore g ce prolongement. L'ensemble D des points de

discontinuité de g est dénombrable et, pour tout réel positif t n'appartenant

pas à Z) et tout couple (r, s) de rationnels tel que r < t < s, on a:

(Vi>0) gmi(r) <gmi(

En faisant tendre i vers l'infini puis r et s vers t, on voit que (gmi) converge
vers g presque partout. On peut donc appliquer le théorème de Lebesgue

à la suite des fonctions t tgm. (- e~l 2

pour y fixé supérieur à 1 ; on obtient
1 \y)

(V>> >1) J te
t2

g dt(25) (Vy > 1) J te -)
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En faisant le changement de variable t2 uy2, il vient

9 Jn a
(V>>1) J e uy"g (y/u) du —3-.

0 y

L'injectivité de la transformation de Laplace implique donc l'égalité

(26) 9(y/û) 2oc^J U

pour presque tout réel positif u. Comme g est croissante, on voit finalement

que (26) a lieu pour tout u.

Nous avons donc montré que, de toute suite d'entiers tendant vers + 00,

on peut extraire une sous-suite (mt) telle que (gm.) tende simplement vers la
fonction 11-> 2at. Cela implique la conclusion annoncée.

6. Le contre exemple

Nous nous proposons ici d'établir le théorème 5.

Soit une fonction réelle tendant vers + 00 ; nous pouvons sans
restreindre la généralité supposer que xj/ est croissante et que l'on a:

(27)

^(0) 1

"MO

y
"A (21)

lim sup
^ (0

< + 00

Définissons alors une suite de nombres réels par

(Vn >2)an

nr
si 13/2 ,/> / m* \-l < n — m3 <0

3\ -1
+ iA(—) si 0<n-m3<m3/2^(|-

si (VmcN) I n — m3 | > m3f2\l/
m*

Il est clair que l'on a pour tout entier « > 2

I a„ I < 1
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