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Dans le cas particulier où sé est la suite de tous les entiers on a d une part

B (x) [x] et d'autre part, compte tenu de (4),

E N(m,x)x(l+o(-Ljj E <p(y,m)
n-y\^yt \ V.F / J\m-y\3Z3fi

x I 1 + O I —
1

\t-y\^y%
cp (y, t) dt + Om

x[l +0(7

en vertu des assertions (iv) et (v) du lemme 1. Cela montre que pour toute

suite s# le terme reste de (5) est majoré par

w -*(1+0 (jr^ o(x)

En reportant dans (5) et en utilisant (4) on obtient

B <X)
1+0

\m-y\^y£
00

(1 + o(1)) J cp (y,t)dA + o (1)) + o (1)

ce qui achève la démonstration du théorème 2.

4. Le résultat abélien

Le lemme suivant, dont la démonstration nous a été suggérée par
H. Delange, nous sera utile.

Lemme 2. Soit A une fonction mesurable complexe vérifiant (1). Alors
la relation (1) a lieu uniformément en c sur tout compact.

Démonstration. On peut supposer sans restreindre la généralité que
l'on a a 0 dans (1).
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Il suffit de montrer que, pour tout réel positif A, il y a convergence uni-

A(xAcJx) — A(x)
forme de vers 0 pour 0 < c < h. En effet, la conver-

v*
gence uniforme pour 0 < c < h implique la convergence uniforme pour
— h' < c <0 quel que soit ti e ]0, h [ du fait que, pour x assez grand on a

Vc — h' c 0) x + cVx +1 x x A cyjx + h -\J + cyjx

x + (h Ac) y/x +0(1).

Fixons donc deux réels positifs h et s.

Pour tout x > 0 on désigne par Ix l'intervalle [.x, x + 2h\/x] et par Ex
l'ensemble des t de Ix satisfaisant à

| A (t) — A (x)

On note El l'ensemble des réels

i
8 r> —- JX'

1 + V2

c de [0, 2h] satisfaisant à

g
I A(x+Cy/x) — -4 (x) | > ^ '

Il est clair que Ex et E*x sont mesurables et que l'on a, en notant /r la mesure
de Lebesgue,

fi(Ex) yßlltä
Maintenant le théorème de Lebesgue sur la convergence dominée

appliqué à la fonction caractéristique de E*x montre que ix (El) o (1).

Il existe donc un réel x09 que l'on peut supposer >/z2, tel que

h
Vx (x > x0) n (Ex)

On voit alors que pour x > x0 on a :

A(x A c y/x — A (x)
Vc (0 < c < h)

En effet, des inégalités

< e
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n(lxnlx+e^) > (2h-c) Vx > hy/x

et

Li(.ExuEx+cjx) < -y/x + -y/x+hjx +Jl + — ^

h _ - -<C — (1+^/2) \/x < h^Jx

on déduit l'existence d'au moins un t appartenant à Ix n Ix+w7 et n'aP"

partenant pas ä Ex u Ex+Cjx. D'après la définition de Ex on obtient

\A(t) -
et

\A(t) - A(x+Cy/x) | < l Vx + h yjx

d'où

| +(x) - A(x+Cyß) | < Y+TjJ (y/x + y/x + h^/x) < 8VX *

Remarque. La démonstration précédente est une variante de celle qui a

été utilisée par Delange *) pour établir le fait suivant, déjà signalé par
Karamata 2) :

Si A est une fonction à croissance lente, c'est-à-dire satisfaisant à

A (ax)
(Va > 1) -y-' 1 +o(l),A(x)

alors cette dernière relation a lieu uniformément en a sur tout compact
de [1, + oo [.

Nous pouvons maintenant établir le théorème 3.

Soit, donc, A une fonction de y satisfaisant à la relation (1). L'assertion
(v) du lemme 1 montre que l'on peut, sans restreindre la généralité, supposer
a 0, soit

(Vc >0) A(x + Cyjx — A(x) o(yJx)

1) H. Delange, «Sur un théorème de Karamata», Bull. Sc. Math. (2) 79 (1955),
1-4.

2) J. Karamata, « Sur un mode de croissance régulière des fonctions », Mathematica 4
(1930), 38-53.

L'Enseignement mathém., t. XXVI, fasc. 3-4. 16
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Comme cette relation, d'après le lemme 2, est uniforme en c sur tout compact,

nous l'écrirons sous la forme:

(6) A{x+OQx))-o(y/x).

En particulier, on a:

A (x) Y A (k2+k) —A( k2 -k)+ (,/x) (jx)
k^y/lc k^yjx

d'où:

(7) A(x) — o (x).

Maintenant, décomposons l'intégrale du premier membre de (3) en une

somme, soit:
CO

f cp(x, i) dA (0 *= J

où /l5 /2, /3 correspondent respectivement aux domaines d'intégration
[0, x — y/x[9 [x — yjx, x+^/x[ et [x+^/x,+oo[.
Une intégration par parties suffit pour majorer 112 I :

i2 [a (t)cp (x, o]
: + V*

X — y/ X

X + y/x fi®
A (t) — (x, t) dt

dt

: + y/x

[(A (t) - A (x)) cp (x, t)]
_

+
X — y/ X

f X + y/x

(A (x) - A (t)) — (x, t) dt
-Vx ôt

la conclusion I2 o (1) découle alors de (6) et de la majoration

sup
I t — X | ^ y/x

dcp

dt
(x,f) O -

qui est une conséquence des assertions (i) et (ii) du lemme 1.

Pour majorer | + I3 |, définissons une suite (xk)keZ de nombres réels

par les formules :

x0 x

Xk Xk-1 + yj*T-1 1, ±2,...)
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on vérifie facilement l'inégalité

1 Y
x + k^jx < Xfc < x J (fe=± 1, ±2,...).

Un réel Ç étant donné dans l'intervalle - -r
2' 3|_'2

m [x{-*]

de sorte que l'on a pour x assez grand

X±m X ± X^ + O (X4")

On décompose alors 11 + /3 en une somme :

on pose

(8) h+h'U +J }

+ E
— m — 1 xj~

k ^ — 1,0

J cp (x, t) dA (t)

D'une part on a, quitte à supposer A (0) 0,

x-m °° x

{J +1 } { <p(*>0 (0} 1<P (*> 0 ^ (0]
0 Xm x

x-m +00 r fia •)

- {J + J } |^(0 ~(x,t)dtj ;

d'après l'assertion (i) du lemme 1 et la relation (7) il vient:

(p(x,x±m)A(x±m) o(l)

et d'après l'assertion (iii) du lemme 1 et la relation (7) on a:

(9)

{ J + j } A (t) — (xst) dt

dcp

*o(x-n) [ç> (x, 0]

+ 0 | t — (x,f) dt

o (x_ w) { <p (x, x_m) - e * } + O (xm cp (x, xm) + J cp (x, 0 dt)
xm

^C1) •



D'autre part, puisqu'aucun des xk(k= ± 1, +2,...) n'appartient à l'intervalle

[x - 1, x] la formule de la moyenne implique

** + i
Vfc(-m<fc<ro-l,fc#-l,0) |J <p(x,t)dA(t)\

xk

< <P (x, xk+i)sup| (t) |

Xk^t^Xk+ 1

avec z 1 si k > 1 et z 0 si k < - 2.

D'après (6) on a donc:

xk + l
Vfc( — m < k < m — 1, fc # — 1, 0) |J <p(x, 0^,4(0 |

Xk

o{^Jxcp(x,xk+ù)

d'où, en utilisant l'assertion (i) du lemme 1,

(to) X! |J ç> Cm) <£<4 (0 j

* * -1,0

"( z exp | - (1+0(1)) 1)
fc^-1,0

0(1).

En reportant (10) et (9) dans (8), on obtient I± + /3 o (1), ce qui achève

la démonstration.

5. Le résultat taubérien

Dans cette section, nous nous proposons d'établir le théorème 4. Nous

supposerons, dans toute la démonstration, A réelle et croissante; grâce au
théorème 3, le cas général se déduit aisément de ce pas particulier.

Nous noterons iA + l'ensemble des fonctions réelles croissantes, définies

sur l'ensemble des réels positifs ou nuls et prolongées par 0 sur l'ensemble
des réels négatifs.

Les méthodes de démonstration que nous utiliserons sont fondées sur
des idées de Hardy et Littlewood ([6], [7]) dont on trouvera un exposé dans

le chapitre 9 de [5]. En particulier, le point crucial consiste à appliquer au
bon moment le théorème de Vitali, que nous énonçons pour mémoire:
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