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Dans le cas particulier ot o/ est la suite de tous les entiers on a d’une part
B (x) = [x] et d’autre part, compte tenu de (4),

Y N(m,x) x<1+0<—11—_—5>> Y e(y,m)
}m—yléyé Y ]m—ylé.vé
1 S >
{is0( ) ] urors ol
1
x<1+0<y1“5>>’

en vertu des assertions (iv) et (v) du lemme 1. Cela montre que pour toute
suite 7 le terme reste de (5) est majoré par

I

En reportant dans (5) et en utilisant (4) on obtient

Bi’ﬂ=(1+o(f_§)> S (. m) +o(l)
X y mesf

]m—yléyZj

= (1+0(1))(0§ @ (y,)dA®) + o(1)) + o (1)

ce qui achéve la démonstration du théoréme 2.

4. LE RESULTAT ABELIEN

Le lemme suivant, dont la démonstration nous a été suggérée par
H. Delange, nous sera utile.

LemMME 2. Soit A une fonction mesurable complexe vérifiant (1). Alors
la relation (1) a lieu uniformément en ¢ sur tout compact.

Démonstration. On peut supposer sans restreindre la généralité que
I'onaa = 0 dans (1).
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Il suffit de montrer que, pour tout réel positif 4, il y a convergence uni-
A +ex) — AX)

NES
gence uniforme pour 0 < ¢ </ implique la convergence uniforme pour
—h" < ¢ < 0quel que soit 42" €10, A[ du fait que, pour x assez grand on a

forme de vers 0 pour 0 << ¢ < h. En effet, la conver-

Ve(—h <ec<0) x+c\/>_c<x<x+c\/§+h\/+c\/;
=x + (h+c)/x + 0(1).

Fixons donc deux réels positifs % et e.
Pour tout x > 0 on désigne par I, Uintervalle [x, x + 2h+4/x] et par E,
I’ensemble des 7 de I, satisfaisant a

|A() —Ax) | > -—w\-/—i Jx

On note E, I’ensemble des réels ¢ de [0, 2A] satisfaisant a

| A(x+eyx) —A() | >

1 +8\/Z’Z VX

Il est clair que E, et E, sont mesurables et que I’on a, en notant y la mesure
de Lebesgue,

u(Ey) = Jxu(Ey) .
Maintenant le théoréme de Lebesgue sur la convergence dominée

appliqué a la fonction caractéristique de E. montre que u (E;) = o ().
11 existe donc un réel x,, que I’'on peut supposer > h?, tel que

h _
Vi >x)  p(E) < gyx.
On voit alors que pour x > x, on a:

A(x +cx) — A(x)

— <&
NE:

Ve(0 <c<h)

En effet, des inégalités
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u(Imex+cJ;) (2]’1—0) \/x h /x

et

h h — h h
b <his b i )

b“

—(14+42) Jx <hyx

3

on déduit Uexistence d’au moins un ¢ appartenant a I, N I, .y% et n’ap-
partenant pas a E, U E,, .y5. D’aprés la définition de E, on obtient

|4 =A@ | <

Al

et

|A(t)—A(x+c\,/§)|\ \/j\/x—}—h\/x

€

[AG) = AGc+ey®) [ < 73 (Jx+Vx+hJX) < eyx.

Remarque. La démonstration précédente est une variante de celle qui a
été utilisée par Delange ') pour établir le fait suivant, déja signalé par
Karamata 2):

Si A est une fonction a croissance lente, c’est-a-dire satisfaisant a

A (ax)
A (x)

(Va > 1) =1+o0(1),

alors cette derniére relation a lieu uniformément en a sur tout compact
de [1, + ool.
Nous pouvons maintenant établir le théoréeme 3.
Soit, donc, 4 une fonction de ¥~ satisfaisant a la relation (1). L’assertion
(v) du lemme 1 montre que I’on peut, sans restreindre la généralité, supposer
= 0, soit
(Ve>0) A(x+cx) — Ax) = o({/x).

1) H. Delange, « Sur un théoreme de Karamata », Bull. Sc. Math. (2) 79 (1955),
1-4.

%) J. Karamata, « Sur un mode de croissance réguliére des fonctions », Mathematica 4
(1930), 38-53.

L’Enseignement mathém., t. XXVI, fasc. 3-4. 16
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Comme cette relation, d’aprés le lemme 2, est uniforme en ¢ sur tout com-
pact, nous I’écrirons sous la forme:

(6) A(x+0([x)) — A(x) = o(x).
En particulier, on a:

AX) = 3T A(P+k) —AK =K +0(/x) = Y ok + o(JX)

k=+vx k=x

d’ou:
(7) Ax) = o(x).

Maintenant, décomposons l'intégrale du premier membre de (3) en une
somme, Soit:

j o(x,)dA() =1, +1, + 1,
0

ou I,, I,, I, correspondent respectivement aux domaines d’intégration
1> £2 3

[0, x— /X[, [x—+/X, x4+ /X[ et [x+./x, +o0].

Une intégration par parties suffit pour majorer ] I, [:

x+Vx x++/x aqo
I, =[A® ¢ (x,0] ~ —J _A(t);?(x,t)dt
x—+x x—vx {

x+Vx x+Vx do
[0 = A@)eeo] | (AW - 40) 2 s

la conclusion I, = o (1) découle alors de (6) et de la majoration

0@ j 1
—(x,t) | = 0| -

ot (1) ' (x)

qui est une conséquence des assertions (i) et (ii) du lemme 1.

Pour majorer l I, + I ] , définissons une suite (x),., de nombres réels
par les formules:

sup

[t—x | =Vx

X, = X

Xy = Xr—1 + \/Xk_l (k:" il, iz, )




— 235 —

on vérifie facilement 1'inégalité

1 k
x+k\/§\<\xk<x(1+\~/z> (k=4+1, £2,..).
X
, . . : 1 2
Un réel ¢ étant donné dans l'intervalle 3030 on pose
m = [x°7%]
de sorte que ’on a pour x assez grand
Xty = X i xé + O(X%) .

On décompose alors I, + I en une somme:

®) I+ 1, ={g_m + ot ndA@m)

*k+1

4 Y [ okx,n0dA@).

—m=k=m-1 x
k#—1,0

D’une part on a, quitte a supposer 4 (0) = 0,

(4] Hetndd®} = [oG,0AD]

X _m + 6
—{({ +§ }{A(t)gg(x,t)dt};

d’aprés I’assertion (i) du lemme 1 et la relation (7) il vient:

QXX ) AX L) = o(1)

et d’apres l’assertion (iii) du lemme 1 et la relation (7) on a:

{ X_m + o 0 ¥—m
){f + | }{A(t)é:i(x, t)}dt <o(x- ) [ (x, D]
0 X 0

9)

A

+ I — t
0 (Jxm Py (x, )dt)

= 00D {0 (%) = e}t 0 (e (ex) + | 0 (x, 1) d)
L = 0(1). "
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D’autre part, puisqu’aucun des x, (k= +1, +2,...) n’appartient a Dinter-
valle [x — 1, x] la formule de la moyenne implique

*k+1

Vik(—-m<k<m-1,k+#—1,0) H (p(x,t)dA(t)l
p;

< @ (X, Xgpp) sup l A — AXerp) l

X =t=Xp 4+ 1

aveci = 1sik>1leti =0sik << —2.
D’apres (6) on a donc:

*k+1

Vk(—-m<k<m-1,k#—1,0) |j qn(x,t)dA(t)[
== 0(\/_>E(P(x:xk+i))

d’ou, en utilisant I’assertion (i) du lemme 1,

*k+ 1
(10) i 4;;:4 , | @ (x, 1) dA (1) |
, =
:o(_ ékz -lexp{-—j(l—i—o(l))})
_ ot k#—1,0

En reportant (10) et (9) dans (8), on obtient I; + I; = o (1), ce qui achéve
la démonstration.

5. LE RESULTAT TAUBERIEN

Dans cette section, nous nous proposons d’établir le théoréme 4. Nous
supposerons, dans toute la démonstration, A réelle et croissante; grace au
théoréme 3, le cas général se déduit aisément de ce pas particulier.

Nous noterons ¥, I'ensemble des fonctions réelles croissantes, définies
sur ’ensemble des réels positifs ou nuls et prolongées par 0 sur I’ensemble
des réels négatifs.

Les méthodes de démonstration que nous utiliserons sont fondées sur
des idées de Hardy et Littlewood ([6], [7]) dont on trouvera un exposé¢ dans
le chapitre 9 de [5]. En particulier, le point crucial consiste & appliquer au
bon moment le théoréme de Vitali, que nous énongons pour mémoire:
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