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elle est croissante sur l'intervalle [0, t (x)[ et décroissante sur l'intervalle

] t (x), + oo [.

1 2
(iv) pour tout réel £ satisfaisant à l'inégalité - < £ < — et tout réel positif

s, on a :

Ut-x\>xS(p(x,t)dt(exp { -x2«-1-*})

(v) on a pour x infini
oo

j cp(x,t)dt 1 +0(e~x).

3. Démonstration du théorème 2

E et g gardant la même signification que dans l'énoncé du théorème 1,

posons pour % réel positif et m entier

y y(x) £ -
P±£* p
peE

et

N (m, x) card {n <^x : g (ri) m}.

Halàsz a démontré dans [4] que l'on a, sous la seule hypothèse y (x) + oo,

pour tout réel <5 satisfaisant à 0 < ô < 1,

(4) N (m, x) x<p(y,m) j 1 + 0 ^ + o ^_L

m
uniformément pour <5 < — < 2 — <5 et y > 2.

y

Notant g'1 on a pour tout x positif

B (x) : card {w<x:ne^} £ ^ (m>x)-
mes/

Fixons alors un nombre réel Ç dans l'intervalle - -\
2 ' 3 L on a:

(5) B(x) £ N(m,x)+0( £
mes/ |m-y|>^

\m-y\^yÇ
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Dans le cas particulier où sé est la suite de tous les entiers on a d une part

B (x) [x] et d'autre part, compte tenu de (4),

E N(m,x)x(l+o(-Ljj E <p(y,m)
n-y\^yt \ V.F / J\m-y\3Z3fi

x I 1 + O I —
1

\t-y\^y%
cp (y, t) dt + Om

x[l +0(7

en vertu des assertions (iv) et (v) du lemme 1. Cela montre que pour toute

suite s# le terme reste de (5) est majoré par

w -*(1+0 (jr^ o(x)

En reportant dans (5) et en utilisant (4) on obtient

B <X)
1+0

\m-y\^y£
00

(1 + o(1)) J cp (y,t)dA + o (1)) + o (1)

ce qui achève la démonstration du théorème 2.

4. Le résultat abélien

Le lemme suivant, dont la démonstration nous a été suggérée par
H. Delange, nous sera utile.

Lemme 2. Soit A une fonction mesurable complexe vérifiant (1). Alors
la relation (1) a lieu uniformément en c sur tout compact.

Démonstration. On peut supposer sans restreindre la généralité que
l'on a a 0 dans (1).
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