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SUR LE PROCÉDÉ DE SOMMATION DE BOREL
ET LA RÉPARTITION

DU NOMBRE DES FACTEURS PREMIERS
DES ENTIERS

par Gérald Tenenbaum

1. Introduction

Soit E un ensemble non vide de nombres premiers. Pour tout entier

naturel positif 77, désignons par QE {ri) et par œE {ri) le nombre des facteurs

premiers de n qui appartiennent à E, comptés respectivement avec et sans

leur ordre de multiplicité. Dans le cas où E est l'ensemble de tous les

nombres premiers nous écrivons QE {ri) Q {ri) et œE {ri) cd {ri).
Pour toute suite d'entiers sri, nous notons A la fonction sommatoire

définie par

/W f 0 si x < 0
(VxeR) A{x) <

I card <x:ne^/} si x > 0

Enfin, étant données une suite d'entiers sé et une fonction arithmétique à

valeurs entières g, nous notons

9-1(>0{neN\{0} :

la suite croissante des entiers positifs n tels que g {ri) appartienne à sé.
Hubert Delange a montré dans [1] que, si sé est une progression arithmétique

et si g Q ou co, alors g~1 {<sé) possède une densité naturelle qui est
celle de sé1). Jean-Marc Deshouillers [3] a généralisé ce résultat au cas où
la suite sé vérifie

A{x) ocx + 0 {y/x

a) Dans le cas de la fonction Q, ce résultat avait déjà été établi par S. S. Pillai
« Generalization of a theorem of Mangoldt » Proc. Indian Acad. Sc. Sect. A, 11 (1940)
13-20.
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pour un certain a de l'intervalle [0, 1]. Il a également montré, dans le cas

où sé est de densité inférieure nulle, que Q~1 {$#) ou œ~1 (stf) possède une
densité (nécessairement nulle) si et seulement si l'on a

(Vc >0) A (x + Cyjx) A (x) + o (y/x).

Nous nous proposons d'étendre ces résultats de la manière suivante:

Théorème 1. Soit E un ensemble de nombres premiers tel que

V 1

L ~ + oo
peE P

On pose g QE ou g œE.

Alors, une condition nécessaire et suffisante sur la suite sé pour que
g~x (jtf) possède une densité naturelle est l'existence d'un réel a de [0 ,1]

tel que

(1) (Vc >0) A (x + Cyjx) — A (x) c otyjx + o (y/x).

De plus, dans ce cas, les suites sé et g'1 Çstf) ont pour densité a.

Rappelons qu'une suite complexe (an)n^0 converge vers un nombre

complexe a au sens de Borel si l'on a pour x infini

(2) e-* £ an=a + o(l).
n=0 n

En posant, pour x- > 0,

A(x)£
n^-x

on voit que la relation (2) équivaut à la relation

(3) e~* J FTTTn dA (t) g + o(1)
0 1 + l)

où r désigne la fonction eulérienne.

Moins par souci de généralité que de commodité et clarté d'exposition,
nous avons préféré le cadre de l'intégrale de Stieltjes à celui des séries.

Ainsi, l'espace des suites complexes disparaîtra-t-il au profit de celui des
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fonctions à valeurs complexes et à variation bornée sur tout intervalle

borné (nous noterons f" cet espace fonctionnel) et la notion de convergence

au sens de Borel sera-t-elle utilisée sous la forme (3).

La première étape de la preuve du théorème 1 consiste à remarquer que
l'existence d'une densité naturelle a pour g~1 (j/) équivaut à la convergence

vers a au sens de Borel de la fonction caractéristique de sé, ce que nous

énonçons sous la forme suivante :

Théorème 2. Si E, g et s# gardent la même signification que dans

l'énoncé du théorème 1, alors la relation (3) est une condition nécessaire et

suffisante pour que la suite g~x (stf) possède la densité a.

On voit maintenant que le théorème 1 est une conséquence de l'équivalence

des conditions (1) et (3) pour toute fonction A de la forme A (x)
Y an où an vaut 0 ou 1.

n^x
En supposant seulement la suite (an) bornée, H. Delange [2] a trouvé de

ce résultat une démonstration courte et élégante utilisant la densité dans
L1 (R) du sous-espace vectoriel engendré par la famille des fonctions

u exp j — — h)2 j, h décrivant R. De plus il a remarqué que l'on

peut déduire l'équivalence de (1) et (3):

• pour la fonction sommatoire d'une suite (an) bornée, d'un théorème
taubérien général de Karamata (cf. [9], théorème II, page 127, appliqué
avec A (t) eVr)

• pour la fonction sommatoire d'une suite (an) majorée ou minorée, d'un
résultat de Wiener et Martin (cf. [12], théorèmes 1 et 2 appliqués avec

F(x) ex et en remplaçant an par — utilisant un théorème taubérien
n

de Wiener [11].

Nous avons obtenu les résultats suivants par une méthode directe,
inspirée pour la partie taubérienne de celle de Hardy et Littlewood dans [6].

Théorème 3. Pour toute fonction A de iA la relation (1) implique la
relation (3).

Théorème 4. Soit A une fonction de

L
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S'il existe un nombre complexe ß et une fonction x h> B (x) satisfaisant
à la relation

(Vc > 0) B (x + c^Jx) — B (x) cßjx + o (yfx)

tels que la fonction x\-> A (x) + B (x) soit à parties réelle et imaginaire
monotones, alors la relation (3) implique la relation (1).

Remarquons que la classe des fonctions x B (x) satisfaisant à la
condition du théorème 4 est assez étendue; elle contient en effet toutes les

fonctions du type
B (x)Bt (x) + o Qx)

où Bx est une fonction dérivable telle que, quand % tend vers l'infini,

B[{x) ß + o(1).

Dans le cas où A est la fonction sommatoire d'une suite an, on obtient,
en prenant B (x) X [x], le corollaire suivant qui, associé aux théorèmes 2

et 3, implique le théorème 1.

Corollaire. Soit (an) une suite de nombres réels. S'il existe un nombre
réel X tel que l'on ait pour n assez grand

an > — X

et si (an) tend vers a au sens de Borel, soit

00 n

an—} a
x-Kx> n= 0 ^ •

alors on a

(C) (Vc> 0) X
_

a„
x < x + Cyjx

Il était connu depuis longtemps (voir [6]) que la condition

£ a„ ocx + o{^x)
n-^-x

(qui implique (C)) est suffisante pour assurer la convergence de (<an) vers a

au sens de Borel. Cependant, nous n'avons trouvé nulle part, dans la
littérature consacrée à ce sujet, explicitement énoncé, un théorème d'équivalence

des conditions (B) et (C).

iß) lim
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Le théorème suivant montre que la restriction an > — X à laquelle est

assujettie l'implication (B) => (C) est optimale.

Théorème 5. Pour toute fonction réelle 11-> \J/ (t) tendant vers l'infini
il existe une suite réelle (an) satisfaisant aux trois propriétés suivantes :

(a) (VweN) \an \ < (n)

(b) (an) tend vers 0 au sens de Borel

(c) Pour toute constante positive c l'expression X _an ne ten<^

s] % x < x + c V*

pas vers 0 lorsque x tend vers l'infini.

2. Un lemme utile

Pour tout couple (.x, t) de réels positifs, nous posons:
x*

(pix.t) e x

r(t +1)

L'énoncé ci-dessous rassemble les principales propriétés de la fonction
cp (x, t). La démonstration, utilisant la formule de Stirling et d'autres
résultats classiques concernant la fonction T, est laissée au lecteur.

Lemme 1.

(i) pour x > 0 et | t - x | < x2/3, on a:

/ x
1 f (*-x)2] /. _ /I + k—x|\ (\t-x|:

TSïcxp I" + ("V-1 > + 0/L

\ \ X
(ii) pour x > 0 et | t - x | < - on a

dcp 1 + \t-x I \
— (x, o=o i—L—!.cp (x> j

(iii) pourtout réelpositif x, la fonction partielle t i-> (x, t) est positive et
atteint son maximum absolu en un point t (x) de l'intervalle [x - 1, x];
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