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SUR LE PROCEDE DE SOMMATION DE BOREL
ET LA REPARTITION
DU NOMBRE DES FACTEURS PREMIERS
DES ENTIERS

par Gérald TENENBAUM

1. INTRODUCTION

Soit £ un ensemble non vide de nombres premiers. Pour tout entier
naturel positif n, désignons par Qp (n) et par wg (n) le nombre des facteurs
premiers de n qui appartiennent a E, comptés respectivement avec et sans
leur ordre de multiplicité. Dans le cas ol E est I’ensemble de tous les
nombres premiers nous écrivons Qg (n) = Q (n) et wg (n) = w (n).

Pour toute suite d’entiers &/, nous notons A4 la fonction sommatoire
définie par
0 si x<0O
card {n <x:nes} si x>0.

(VxeR) AX) = {
Enfin, étant données une suite d’entiers o/ et une fonction arithmétique a
valeurs entiéres g, nous notons

g7 () = {neN\{0}:g(me}

la suite croissante des entiers positifs # tels que g (1) appartienne a .

Hubert Delange a montré dans [1] que, si o est une progression arithmé-
tique et sig = Q ou w, alors g~ * () posséde une densité naturelle qui est
celle de o7 !). Jean-Marc Deshouillers [3] a généralisé ce résultat au cas ol
la suite .o/ vérifie

A(x) = ax + o({/x)

D) Dans le cas de la fonction (3, ce résultat avait déja été établi par S. S. Pillai
«3Generahzat10n of a theorem of Mangoldt » Proc. Indian Acad. Sc. Sect. A, 11 (1940),
13-20.
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pour un certain « de l'intervalle [0, 1]. 11 a également montré, dans le cas
ol .« est de densité inférieure nulle, que Q™! (&) ou w ™! () posséde une
densité (nécessairement nulle) si et seulement si 'on a

(Ve>0) Ax+efx) = AX) + o((Yx).

Nous nous proposons d’étendre ces résultats de la maniére suivante:

THEOREME 1. Soit E un ensemble de nombres premiers tel que

peE p

On pose g = Q ou g = wy.

Alors, une condition nécessaire et suffisante sur la suite </ pour que
g~ 1 (4) posséde une densité naturelle est I’existence d’un réel o de [0,1]
tel que

(1) (Ve>0) A(x+eyx) — A(x) = cay/x + o(Yx).
De plus, dans ce cas, les suites o/ et g~ ' () ont pour densité o.

Rappelons qu’une suite complexe (a,),~.o converge vers un nombre
complexe a au sens de Borel si ’on a pour x infini

B oe] xn

(2) e Y a, — =a+o(l).

n—0 n!

En posant, pour x >0,

A(X) = Z d, »

n=x

on voit que la relation (2) équivaut a la relation

0 t

- X x .
(3) e gmdA(t)—OC-FO(l)

ou I' désigne la fonction eulérienne.

Moins par souci de généralité que de commodité et clarté d’exposition,
nous avons préféré le cadre de l'intégrale de Stieltjes a celui des séries.
Ainsi, Iespace des suites complexes disparaitra-t-il au profit de celui des




— 227 —

fonctions & valeurs complexes et a variation bornée sur tout intervalle
borné (nous noterons ¥~ cet espace fonctionnel) et la notion de convergence
au sens de Borel sera-t-elle utilisée sous la forme (3).

La premiére étape de la preuve du théoréme 1 consiste a remarquer que
Iexistence d’une densité naturelle o« pour g~ * () équivaut a la convergence
vers o au sens de Borel de la fonction caractéristique de &7, ce€ que nous
énongons sous la forme suivante:

THEOREME 2. Si E, g et & gardent la méme signification que dans
[’énoncé du théoréme 1, alors la relation (3) est une condition nécessaire et
suffisante pour que la suite g~ (/) posséde la densité o.

On voit maintenant que le théoréme 1 est une conséquence de ’équiva-
lence des conditions (1) et (3) pour toute fonction 4 de la forme A (x)
= Y a,oua,vautOou l.

n=x

En supposant seulement la suite (a,) bornée, H. Delange [2] a trouvé de
ce résultat une démonstration courte et élégante utilisant la densité dans
L' (R) du sous-espace vectoriel engendré par la famille des fonctions

1
U > exp{ — E(u —h)? }, h décrivant R. De plus il a remarqué que I'on
peut déduire I’équivalence de (1) et (3):

pour la fonction sommatoire d’une suite (a,) bornée, d’un théoréme
taubérien général de Karamata (cf. [9], théoréme II, page 127, appliqué
avec A () = eV?r)

pour la fonction sommatoire d’une suite (a,) majorée ou minorée, d’un
résultat de Wiener et Martin (cf. [12], théorémes 1 et 2 appliqués avec

a
F(x) = €* et en remplagant a, par—";) utilisant un théoréme taubérien
n!

de Wiener [11].

Nous avons obtenu les résultats suivants par une méthode directe,
inspirée pour la partie taubérienne de celle de Hardy et Littlewood dans [6].

THEOREME 3. Pour toute fonction A de ¥ la relation (1) implique la
relation (3).

THEOREME 4. Soit A une fonction de V.
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S'"'il existe un nombre complexe B et une fonction x —> B (x) satisfaisant
a la relation

(Ve>0)  B(x+cyx) — B(x) = cB % + 0(JX)

tels que la fonction xvw> A (x) + B(x) soit a parties réelle et imaginaire
monotones, alors la relation (3) implique la relation (1).

Remarquons que la classe des fonctions x +> B (x) satisfaisant a la
condition du théoréme 4 est assez étendue; elle contient en effet toutes les
fonctions du type

B(x) = By (x) + o(/x)

ou B, est une fonction dérivable telle que, quand x tend vers I'infini,

Bi(x) =B +0(1).

Dans le cas ou A4 est la fonction sommatoire d’une suite a,, on obtient,
en prenant B (x) = A [x], le corollaire suivant qui, associé aux théorémes 2
et 3, implique le théoréme 1.

COROLLAIRE. Soit (a,) une suite de nombres réels. S’il existe un nombre
réel A tel que l’on ait pour n assez grand

a, = —2

et si (a,) tend vers o au sens de Borel, soit

(B) lim e ) a,,x— = o
X n=0 I’l!
alors on a
(C) (Ve >0) > a, = co/x + o(Yx).

X =n<x +cJ;

Il était connu depuis longtemps (voir [6]) que la condition

Y a, = ax + o(x)

n=x
(qui implique (C)) est suffisante pour assurer la convergence de (a,) vers o
au sens de Borel. Cependant, nous n’avons trouvé nulle part, dans la
littérature consacrée a ce sujet, explicitement énoncé, un théoréme d’équiva-
lence des conditions (B) et (C).
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Le théoréme suivant montre que la restriction a, > — 2 a laquelle est
assujettie I'implication (B) = (C) est optimale.

THEOREME 5. Pour toute fonction réelle t v (¢t) tendant vers l'infini
il existe une suite réelle (a,) satisfaisant aux trois propriétés suivantes :

@  (VneN) |a,| <y @

(b)  (a,) tend vers O au sens de Borel

1
(¢) Pour toute constante positive ¢ [’expression —= Y a, ne tend

\/X X=n<x4c Jx
pas vers 0 lorsque x tend vers l’infini.

2. UN LEMME UTILE

Pour tout couple (x, ¢) de réels positifs, nous posons:

xt

r+1)°

L’énoncé ci-dessous rassemble les principales propriétés de la fonction
¢ (x,t). La démonstration, utilisant la formule de Stirling et d’autres
résultats classiques concernant la fonction I, est laissée au lecteur.

@ (xs t) =e 7

LEMME 1.

(i) pour x > 0 et |t — x| <x*3, ona:

o) = —exp {— (—t_x)z} <1+o (M) +0 (lf—xP))
21X s X "

(i) pour x > 0 et |t — x| <"

on a

0 —
_(p(x,t) = QO <1ixj . (p(x,t)>
ot X

(i1i) pour tout réel positif x, la fonction partielle t > @ (x, t) est positive et
atteint son maximum absolu en un point t (x) de l’intervalle [x — 1, x];
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