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SUR LE PROCÉDÉ DE SOMMATION DE BOREL
ET LA RÉPARTITION

DU NOMBRE DES FACTEURS PREMIERS
DES ENTIERS

par Gérald Tenenbaum

1. Introduction

Soit E un ensemble non vide de nombres premiers. Pour tout entier

naturel positif 77, désignons par QE {ri) et par œE {ri) le nombre des facteurs

premiers de n qui appartiennent à E, comptés respectivement avec et sans

leur ordre de multiplicité. Dans le cas où E est l'ensemble de tous les

nombres premiers nous écrivons QE {ri) Q {ri) et œE {ri) cd {ri).
Pour toute suite d'entiers sri, nous notons A la fonction sommatoire

définie par

/W f 0 si x < 0
(VxeR) A{x) <

I card <x:ne^/} si x > 0

Enfin, étant données une suite d'entiers sé et une fonction arithmétique à

valeurs entières g, nous notons

9-1(>0{neN\{0} :

la suite croissante des entiers positifs n tels que g {ri) appartienne à sé.
Hubert Delange a montré dans [1] que, si sé est une progression arithmétique

et si g Q ou co, alors g~1 {<sé) possède une densité naturelle qui est
celle de sé1). Jean-Marc Deshouillers [3] a généralisé ce résultat au cas où
la suite sé vérifie

A{x) ocx + 0 {y/x

a) Dans le cas de la fonction Q, ce résultat avait déjà été établi par S. S. Pillai
« Generalization of a theorem of Mangoldt » Proc. Indian Acad. Sc. Sect. A, 11 (1940)
13-20.
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pour un certain a de l'intervalle [0, 1]. Il a également montré, dans le cas

où sé est de densité inférieure nulle, que Q~1 {$#) ou œ~1 (stf) possède une
densité (nécessairement nulle) si et seulement si l'on a

(Vc >0) A (x + Cyjx) A (x) + o (y/x).

Nous nous proposons d'étendre ces résultats de la manière suivante:

Théorème 1. Soit E un ensemble de nombres premiers tel que

V 1

L ~ + oo
peE P

On pose g QE ou g œE.

Alors, une condition nécessaire et suffisante sur la suite sé pour que
g~x (jtf) possède une densité naturelle est l'existence d'un réel a de [0 ,1]

tel que

(1) (Vc >0) A (x + Cyjx) — A (x) c otyjx + o (y/x).

De plus, dans ce cas, les suites sé et g'1 Çstf) ont pour densité a.

Rappelons qu'une suite complexe (an)n^0 converge vers un nombre

complexe a au sens de Borel si l'on a pour x infini

(2) e-* £ an=a + o(l).
n=0 n

En posant, pour x- > 0,

A(x)£
n^-x

on voit que la relation (2) équivaut à la relation

(3) e~* J FTTTn dA (t) g + o(1)
0 1 + l)

où r désigne la fonction eulérienne.

Moins par souci de généralité que de commodité et clarté d'exposition,
nous avons préféré le cadre de l'intégrale de Stieltjes à celui des séries.

Ainsi, l'espace des suites complexes disparaîtra-t-il au profit de celui des
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fonctions à valeurs complexes et à variation bornée sur tout intervalle

borné (nous noterons f" cet espace fonctionnel) et la notion de convergence

au sens de Borel sera-t-elle utilisée sous la forme (3).

La première étape de la preuve du théorème 1 consiste à remarquer que
l'existence d'une densité naturelle a pour g~1 (j/) équivaut à la convergence

vers a au sens de Borel de la fonction caractéristique de sé, ce que nous

énonçons sous la forme suivante :

Théorème 2. Si E, g et s# gardent la même signification que dans

l'énoncé du théorème 1, alors la relation (3) est une condition nécessaire et

suffisante pour que la suite g~x (stf) possède la densité a.

On voit maintenant que le théorème 1 est une conséquence de l'équivalence

des conditions (1) et (3) pour toute fonction A de la forme A (x)
Y an où an vaut 0 ou 1.

n^x
En supposant seulement la suite (an) bornée, H. Delange [2] a trouvé de

ce résultat une démonstration courte et élégante utilisant la densité dans
L1 (R) du sous-espace vectoriel engendré par la famille des fonctions

u exp j — — h)2 j, h décrivant R. De plus il a remarqué que l'on

peut déduire l'équivalence de (1) et (3):

• pour la fonction sommatoire d'une suite (an) bornée, d'un théorème
taubérien général de Karamata (cf. [9], théorème II, page 127, appliqué
avec A (t) eVr)

• pour la fonction sommatoire d'une suite (an) majorée ou minorée, d'un
résultat de Wiener et Martin (cf. [12], théorèmes 1 et 2 appliqués avec

F(x) ex et en remplaçant an par — utilisant un théorème taubérien
n

de Wiener [11].

Nous avons obtenu les résultats suivants par une méthode directe,
inspirée pour la partie taubérienne de celle de Hardy et Littlewood dans [6].

Théorème 3. Pour toute fonction A de iA la relation (1) implique la
relation (3).

Théorème 4. Soit A une fonction de

L
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S'il existe un nombre complexe ß et une fonction x h> B (x) satisfaisant
à la relation

(Vc > 0) B (x + c^Jx) — B (x) cßjx + o (yfx)

tels que la fonction x\-> A (x) + B (x) soit à parties réelle et imaginaire
monotones, alors la relation (3) implique la relation (1).

Remarquons que la classe des fonctions x B (x) satisfaisant à la
condition du théorème 4 est assez étendue; elle contient en effet toutes les

fonctions du type
B (x)Bt (x) + o Qx)

où Bx est une fonction dérivable telle que, quand % tend vers l'infini,

B[{x) ß + o(1).

Dans le cas où A est la fonction sommatoire d'une suite an, on obtient,
en prenant B (x) X [x], le corollaire suivant qui, associé aux théorèmes 2

et 3, implique le théorème 1.

Corollaire. Soit (an) une suite de nombres réels. S'il existe un nombre
réel X tel que l'on ait pour n assez grand

an > — X

et si (an) tend vers a au sens de Borel, soit

00 n

an—} a
x-Kx> n= 0 ^ •

alors on a

(C) (Vc> 0) X
_

a„
x < x + Cyjx

Il était connu depuis longtemps (voir [6]) que la condition

£ a„ ocx + o{^x)
n-^-x

(qui implique (C)) est suffisante pour assurer la convergence de (<an) vers a

au sens de Borel. Cependant, nous n'avons trouvé nulle part, dans la
littérature consacrée à ce sujet, explicitement énoncé, un théorème d'équivalence

des conditions (B) et (C).

iß) lim
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Le théorème suivant montre que la restriction an > — X à laquelle est

assujettie l'implication (B) => (C) est optimale.

Théorème 5. Pour toute fonction réelle 11-> \J/ (t) tendant vers l'infini
il existe une suite réelle (an) satisfaisant aux trois propriétés suivantes :

(a) (VweN) \an \ < (n)

(b) (an) tend vers 0 au sens de Borel

(c) Pour toute constante positive c l'expression X _an ne ten<^

s] % x < x + c V*

pas vers 0 lorsque x tend vers l'infini.

2. Un lemme utile

Pour tout couple (.x, t) de réels positifs, nous posons:
x*

(pix.t) e x

r(t +1)

L'énoncé ci-dessous rassemble les principales propriétés de la fonction
cp (x, t). La démonstration, utilisant la formule de Stirling et d'autres
résultats classiques concernant la fonction T, est laissée au lecteur.

Lemme 1.

(i) pour x > 0 et | t - x | < x2/3, on a:

/ x
1 f (*-x)2] /. _ /I + k—x|\ (\t-x|:

TSïcxp I" + ("V-1 > + 0/L

\ \ X
(ii) pour x > 0 et | t - x | < - on a

dcp 1 + \t-x I \
— (x, o=o i—L—!.cp (x> j

(iii) pourtout réelpositif x, la fonction partielle t i-> (x, t) est positive et
atteint son maximum absolu en un point t (x) de l'intervalle [x - 1, x];
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elle est croissante sur l'intervalle [0, t (x)[ et décroissante sur l'intervalle

] t (x), + oo [.

1 2
(iv) pour tout réel £ satisfaisant à l'inégalité - < £ < — et tout réel positif

s, on a :

Ut-x\>xS(p(x,t)dt(exp { -x2«-1-*})

(v) on a pour x infini
oo

j cp(x,t)dt 1 +0(e~x).

3. Démonstration du théorème 2

E et g gardant la même signification que dans l'énoncé du théorème 1,

posons pour % réel positif et m entier

y y(x) £ -
P±£* p
peE

et

N (m, x) card {n <^x : g (ri) m}.

Halàsz a démontré dans [4] que l'on a, sous la seule hypothèse y (x) + oo,

pour tout réel <5 satisfaisant à 0 < ô < 1,

(4) N (m, x) x<p(y,m) j 1 + 0 ^ + o ^_L

m
uniformément pour <5 < — < 2 — <5 et y > 2.

y

Notant g'1 on a pour tout x positif

B (x) : card {w<x:ne^} £ ^ (m>x)-
mes/

Fixons alors un nombre réel Ç dans l'intervalle - -\
2 ' 3 L on a:

(5) B(x) £ N(m,x)+0( £
mes/ |m-y|>^

\m-y\^yÇ
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Dans le cas particulier où sé est la suite de tous les entiers on a d une part

B (x) [x] et d'autre part, compte tenu de (4),

E N(m,x)x(l+o(-Ljj E <p(y,m)
n-y\^yt \ V.F / J\m-y\3Z3fi

x I 1 + O I —
1

\t-y\^y%
cp (y, t) dt + Om

x[l +0(7

en vertu des assertions (iv) et (v) du lemme 1. Cela montre que pour toute

suite s# le terme reste de (5) est majoré par

w -*(1+0 (jr^ o(x)

En reportant dans (5) et en utilisant (4) on obtient

B <X)
1+0

\m-y\^y£
00

(1 + o(1)) J cp (y,t)dA + o (1)) + o (1)

ce qui achève la démonstration du théorème 2.

4. Le résultat abélien

Le lemme suivant, dont la démonstration nous a été suggérée par
H. Delange, nous sera utile.

Lemme 2. Soit A une fonction mesurable complexe vérifiant (1). Alors
la relation (1) a lieu uniformément en c sur tout compact.

Démonstration. On peut supposer sans restreindre la généralité que
l'on a a 0 dans (1).
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Il suffit de montrer que, pour tout réel positif A, il y a convergence uni-

A(xAcJx) — A(x)
forme de vers 0 pour 0 < c < h. En effet, la conver-

v*
gence uniforme pour 0 < c < h implique la convergence uniforme pour
— h' < c <0 quel que soit ti e ]0, h [ du fait que, pour x assez grand on a

Vc — h' c 0) x + cVx +1 x x A cyjx + h -\J + cyjx

x + (h Ac) y/x +0(1).

Fixons donc deux réels positifs h et s.

Pour tout x > 0 on désigne par Ix l'intervalle [.x, x + 2h\/x] et par Ex
l'ensemble des t de Ix satisfaisant à

| A (t) — A (x)

On note El l'ensemble des réels

i
8 r> —- JX'

1 + V2

c de [0, 2h] satisfaisant à

g
I A(x+Cy/x) — -4 (x) | > ^ '

Il est clair que Ex et E*x sont mesurables et que l'on a, en notant /r la mesure
de Lebesgue,

fi(Ex) yßlltä
Maintenant le théorème de Lebesgue sur la convergence dominée

appliqué à la fonction caractéristique de E*x montre que ix (El) o (1).

Il existe donc un réel x09 que l'on peut supposer >/z2, tel que

h
Vx (x > x0) n (Ex)

On voit alors que pour x > x0 on a :

A(x A c y/x — A (x)
Vc (0 < c < h)

En effet, des inégalités

< e
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n(lxnlx+e^) > (2h-c) Vx > hy/x

et

Li(.ExuEx+cjx) < -y/x + -y/x+hjx +Jl + — ^

h _ - -<C — (1+^/2) \/x < h^Jx

on déduit l'existence d'au moins un t appartenant à Ix n Ix+w7 et n'aP"

partenant pas ä Ex u Ex+Cjx. D'après la définition de Ex on obtient

\A(t) -
et

\A(t) - A(x+Cy/x) | < l Vx + h yjx

d'où

| +(x) - A(x+Cyß) | < Y+TjJ (y/x + y/x + h^/x) < 8VX *

Remarque. La démonstration précédente est une variante de celle qui a

été utilisée par Delange *) pour établir le fait suivant, déjà signalé par
Karamata 2) :

Si A est une fonction à croissance lente, c'est-à-dire satisfaisant à

A (ax)
(Va > 1) -y-' 1 +o(l),A(x)

alors cette dernière relation a lieu uniformément en a sur tout compact
de [1, + oo [.

Nous pouvons maintenant établir le théorème 3.

Soit, donc, A une fonction de y satisfaisant à la relation (1). L'assertion
(v) du lemme 1 montre que l'on peut, sans restreindre la généralité, supposer
a 0, soit

(Vc >0) A(x + Cyjx — A(x) o(yJx)

1) H. Delange, «Sur un théorème de Karamata», Bull. Sc. Math. (2) 79 (1955),
1-4.

2) J. Karamata, « Sur un mode de croissance régulière des fonctions », Mathematica 4
(1930), 38-53.

L'Enseignement mathém., t. XXVI, fasc. 3-4. 16
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Comme cette relation, d'après le lemme 2, est uniforme en c sur tout compact,

nous l'écrirons sous la forme:

(6) A{x+OQx))-o(y/x).

En particulier, on a:

A (x) Y A (k2+k) —A( k2 -k)+ (,/x) (jx)
k^y/lc k^yjx

d'où:

(7) A(x) — o (x).

Maintenant, décomposons l'intégrale du premier membre de (3) en une

somme, soit:
CO

f cp(x, i) dA (0 *= J

où /l5 /2, /3 correspondent respectivement aux domaines d'intégration
[0, x — y/x[9 [x — yjx, x+^/x[ et [x+^/x,+oo[.
Une intégration par parties suffit pour majorer 112 I :

i2 [a (t)cp (x, o]
: + V*

X — y/ X

X + y/x fi®
A (t) — (x, t) dt

dt

: + y/x

[(A (t) - A (x)) cp (x, t)]
_

+
X — y/ X

f X + y/x

(A (x) - A (t)) — (x, t) dt
-Vx ôt

la conclusion I2 o (1) découle alors de (6) et de la majoration

sup
I t — X | ^ y/x

dcp

dt
(x,f) O -

qui est une conséquence des assertions (i) et (ii) du lemme 1.

Pour majorer | + I3 |, définissons une suite (xk)keZ de nombres réels

par les formules :

x0 x

Xk Xk-1 + yj*T-1 1, ±2,...)
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on vérifie facilement l'inégalité

1 Y
x + k^jx < Xfc < x J (fe=± 1, ±2,...).

Un réel Ç étant donné dans l'intervalle - -r
2' 3|_'2

m [x{-*]

de sorte que l'on a pour x assez grand

X±m X ± X^ + O (X4")

On décompose alors 11 + /3 en une somme :

on pose

(8) h+h'U +J }

+ E
— m — 1 xj~

k ^ — 1,0

J cp (x, t) dA (t)

D'une part on a, quitte à supposer A (0) 0,

x-m °° x

{J +1 } { <p(*>0 (0} 1<P (*> 0 ^ (0]
0 Xm x

x-m +00 r fia •)

- {J + J } |^(0 ~(x,t)dtj ;

d'après l'assertion (i) du lemme 1 et la relation (7) il vient:

(p(x,x±m)A(x±m) o(l)

et d'après l'assertion (iii) du lemme 1 et la relation (7) on a:

(9)

{ J + j } A (t) — (xst) dt

dcp

*o(x-n) [ç> (x, 0]

+ 0 | t — (x,f) dt

o (x_ w) { <p (x, x_m) - e * } + O (xm cp (x, xm) + J cp (x, 0 dt)
xm

^C1) •



D'autre part, puisqu'aucun des xk(k= ± 1, +2,...) n'appartient à l'intervalle

[x - 1, x] la formule de la moyenne implique

** + i
Vfc(-m<fc<ro-l,fc#-l,0) |J <p(x,t)dA(t)\

xk

< <P (x, xk+i)sup| (t) |

Xk^t^Xk+ 1

avec z 1 si k > 1 et z 0 si k < - 2.

D'après (6) on a donc:

xk + l
Vfc( — m < k < m — 1, fc # — 1, 0) |J <p(x, 0^,4(0 |

Xk

o{^Jxcp(x,xk+ù)

d'où, en utilisant l'assertion (i) du lemme 1,

(to) X! |J ç> Cm) <£<4 (0 j

* * -1,0

"( z exp | - (1+0(1)) 1)
fc^-1,0

0(1).

En reportant (10) et (9) dans (8), on obtient I± + /3 o (1), ce qui achève

la démonstration.

5. Le résultat taubérien

Dans cette section, nous nous proposons d'établir le théorème 4. Nous

supposerons, dans toute la démonstration, A réelle et croissante; grâce au
théorème 3, le cas général se déduit aisément de ce pas particulier.

Nous noterons iA + l'ensemble des fonctions réelles croissantes, définies

sur l'ensemble des réels positifs ou nuls et prolongées par 0 sur l'ensemble
des réels négatifs.

Les méthodes de démonstration que nous utiliserons sont fondées sur
des idées de Hardy et Littlewood ([6], [7]) dont on trouvera un exposé dans

le chapitre 9 de [5]. En particulier, le point crucial consiste à appliquer au
bon moment le théorème de Vitali, que nous énonçons pour mémoire:
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Soit (9 un domaine du plan complexe et (/„) une famille de fonctions
holomorphes sur (9, bornée pour la topologie de la convergence sur tout compact
de (9 et convergeant vers une fonction holomorphe f définie sur (9, sur une

suite de points ayant un point d'accumulation dans (9. Alors (/„) converge

vers f uniformément sur tout compact de (9.

Lemme 3. Pour toute fonction A de 7^+, les conditions suivantes sont

équivalentes :

(3) j cp(x,t)dA(t) a + o(l)
o

1 +co r h 2 *

ai) -v-

f 1

exp < — — > dA (x + h^jx a -f o (1)

Dans [6], Hardy et Littlewood ont montré l'équivalence des conditions (3)
et (11) dans le cas où A (t) est la fonction sommatoire d'une suite

an o{<\/n)\ Hyslop [8] a généralisé ce résultat au cas oùa„ O (nK)

pour un réel arbitraire K. Bien que le résultat du lemme 3 ne soit pas une
conséquence de ces travaux antérieurs, la démonstration ne met en œuvre
aucun moyen nouveau; nous nous contenterons d'exposer les grandes
lignes de la preuve de l'implication (3) => (11), le lecteur n'aura aucune
peine, s'il le désire, à compléter la démonstration.

Comme la mesure dA (t) est positive on a

X + qX CO

j cp (x, t) dA(t)<| <p(x,t)dA(t) 0(1),
X 0

et comme, d'après le lemme 1, il existe une constante positive a telle que

l'on ait pour x assez grand et t dans [x, x + <\/x], cp (x, t) > on voit
V*

que

A(x+^Jx)- A(x)OQx)

Maintenant il est facile d'en déduire que l'on a uniformément pour y

(12) A(x +y) - A(x) =0 (y)

et en particulier

(13) A(x) =0 (x).
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Soit alors £ un réel fixé dans l'intervalle

et des estimations du lemme 1 la majoration

1 2

2' 3
; on déduit de (13)

d'où finalement:

00

J <p(x,t)dA(t) I

J (p(x,t) dA(— o(l)
| t- X [ >X%

1t - X ] <

1
J

cp (x, t)dA(0 + o (1)

l(f-x)2
V2?IX \t-x\<xi

+ ^2 + 0 (1)

exp J - 2 x

avec

et

Ri O

R2 O

1 + \t —x I

exp < — —

1 (t —x)2

2 x

dA (t) -f- Ri

dA(t)

11 - X j <

Hrexp{...
x3/2 P 1 2 x

1 t— x)2
dA(t)J

| t — x | < ;

Comme dA (t) est positive et que les fonctions h i-> | h | e
h 2/2 et

h h-> | h |3 e~h2/2 sont bornées sur la droite réelle, on voit que R± et R2 sont

0 |
A<-X+X'>

„ (y d.aprSs (12).

En remarquant finalement que

1 1 (t—x)2)
CXP ^ ~ 2—x—1

dA °^
I ' ~ * | > xi

on obtient la conclusion souhaitée.

Le résultat suivant est l'analogue d'un théorème de Hardy et Little-
wood ([6], théorème 4.3).

Lemme 4. Soit A une fonction de ir+. Si l'intégrale

(14) A (y) yI e tydA (0
0
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converge pour y > y0, alors elle définit une fonction analytique de y sur

l'intervalle ] ya, +00 [, on a pour tout y > y0 et tout entier non négatif n

A

t4 00 J (-tf1 e-,y (n -ty) dA(t)
cl y 0

et, pour tout réel positif k, les deux assertions suivantes sont équivalentes :

(i) l'intégrale (14) est convergente pour tout réel positif y et l'on a

(15)

(ii) on a pour x infini

+ 00

(16)

" - k)"V (k) a
,,=o n

k

2tix
exp

kh2

2~ dA(x +hyjx) a + o(l)

Démonstration. Les deux premières assertions concernant l'intégrale (14)
constituent un résultat classique sur la transformation de Laplace-Stieltjes
(voir par exemple Widder [10], chapitre II, §5).

Supposons maintenant que A satisfasse à la condition (i). On a

A
00 _ ]An dn A v

— JAn 00

£ —PÇ» </0 lim S —1 I (-ty-H-*(n-tk)dA(t)
n 0 ft • dy v 00 n— 0 ft • 0

00 v (ktY*1
lim k J e~tk (tk—n) dA (t)

v -»• oo 0 77 0 ft •

v ->• 00 0 i (n — 1) n=0 n
00 (fctV

lim k J e~tk dA (t)

En posant \j/(x, t) k cp (tk, v) pour v ~ [k x], on voit donc que (15)
équivaut à

00

(17) j 1jf (x, t) dA (t) a + 0 (1)
0

11 2
Un réel Ç étant fixé dans l'intervalle

2' 3
on vérifie que l'on a pour

\t—x\ < xç
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(1S) *M " Jé exp {" -2
' ^K1*0^)) '

X + V X

Comme (17) implique que l'intégrale J \j/ (x, t) dA (t) est bornée on

en déduit, comme dans la démonstration du lemme 3, la majoration

(19) A(x) 0(x);
cela implique

J dA (t)o(l),
| t - X | ^

i r r k(t—x)2)-,expi-- =o(l)
VX \t-x\(. 2 X J

et finalement (16), en utilisant (18) et le changement de variable

t x + h<\/x.
Pour établir l'implication réciproque (ii) => (i), il suffit de remonter les

calculs précédents, après avoir remarqué que (16) implique (19) et donc la

convergence de l'intégrale (14) pour tout y positif.

Lemme 5. Soit A une fonction de ir+.
Si A vérifie (16) pour un nombre réel positif k, il en est de même pour

tout nombre k' satisfaisant à l'inégalité 0 < k' < k.

Démonstration. On utilise l'équivalence énoncée au lemme 4; le résultat
est une conséquence immédiate du théorème suivant, dû à Hardy et Little-
wood [6]:

Si la série entière
00

f (x)Z un
n 0

converge en un point x0 de son cercle de convergence et si 6 appartient à

]0, 1 [, alors la série de Taylor de f(9x0+ (1 - 0) x0), soit

00 1 dnf
(20) I — -4 {OxJ{(l-0)xoy,

n 0 ni dxn

converge également vers f (x0).

Il suffit, en effet, d'appliquer le théorème à la série entière définie pour
| x | < 1 par
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n _ o Yi ay

qui converge en x0 1.
A

Comme A est analytique sur ] 0, + oo [, on a pour tout x dans ] 0, 1 [

fix) A(k(l-x))
et donc, en posant k' k (1 — 6),

dnf dn A
Yi(0)=i-kr — (ifc').
dx" dy

Le résultat en découle, en remplaçant dans (20).

Nous pouvons maintenant aborder la dernière étape de la démonstration

du théorème 4.

Soit donc A une fonction def + satisfaisant à (3). Nous allons montrer

que la suite de fonctions (gm)m^i définie par

(VmeN* \/t> 0) gm(t) —i= {A (m + tJ m) — A (m —tJ m)}
V m *

converge simplement vers la fonction t \-> 2at; la croissance de A permettra
alors d'en déduire (1).

M-D'après les lemmes 3 et 5, on a, pour tout réel k de l'intervalle

lorsque m tend vers l'infini

(21) jjl_ j exp { — kh2 } dA(m+h sjm) a + o (1)
V k m - oo

De plus, comme la mesure dA (t) est positive, la suite des fonctions définies
sur le demi-plan JT {z e C : Re z > 0} par

I + OO

(22) fm(z)/— J exp { -z
V 7i m - oo

est bornée pour la topologie de la convergence uniforme sur tout compact

de X. Comme fm(z) tend vers a pour z k e Jo,^, le théorème de

Vitali implique

(23) (VzeJf) fm(z) a + o(l).
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En intégrant par parties l'intégrale figurant au second membre de (22), la
relation (23) devient:

CO /

(VzeX) | hgm(h)exp{ -zh2}dh+ o(l).

Soit y un réel positif; prenons z y
2 et effectuons le changement de variable

t hy, on obtient:

(24) (Vy > 0) | tgmf-\e~t2 dt
o \yj 2

En particulier, il existe une constante positive M telle que l'on ait pour m
assez grand

°°

J tgm(t) e~'2 dt < M
0

Comme gm est positive et croissante en t, cela implique

00

(Vt > 0)

La famille des fonctions t -* tgm - e
'2 est donc, pour chaque y fixé supé-

\yj
rieur à 1, majorée par une fonction intégrable pour la mesure de Lebesgue.

Maintenant, de toute suite d'entiers tendant vers l'infini, on peut
extraire, par un procédé diagonal, une sous-suite (mi) telle que la suite

(gm.)i^0 converge simplement sur l'ensemble des rationnels positifs vers

une fonction g, définie sur Q+ et croissante. On peut la prolonger en une
fonction croissante définie sur l'ensemble des réels positifs et continue à

gauche. Notons encore g ce prolongement. L'ensemble D des points de

discontinuité de g est dénombrable et, pour tout réel positif t n'appartenant

pas à Z) et tout couple (r, s) de rationnels tel que r < t < s, on a:

(Vi>0) gmi(r) <gmi(

En faisant tendre i vers l'infini puis r et s vers t, on voit que (gmi) converge
vers g presque partout. On peut donc appliquer le théorème de Lebesgue

à la suite des fonctions t tgm. (- e~l 2

pour y fixé supérieur à 1 ; on obtient
1 \y)

(V>> >1) J te
t2

g dt(25) (Vy > 1) J te -)
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En faisant le changement de variable t2 uy2, il vient

9 Jn a
(V>>1) J e uy"g (y/u) du —3-.

0 y

L'injectivité de la transformation de Laplace implique donc l'égalité

(26) 9(y/û) 2oc^J U

pour presque tout réel positif u. Comme g est croissante, on voit finalement

que (26) a lieu pour tout u.

Nous avons donc montré que, de toute suite d'entiers tendant vers + 00,

on peut extraire une sous-suite (mt) telle que (gm.) tende simplement vers la
fonction 11-> 2at. Cela implique la conclusion annoncée.

6. Le contre exemple

Nous nous proposons ici d'établir le théorème 5.

Soit une fonction réelle tendant vers + 00 ; nous pouvons sans
restreindre la généralité supposer que xj/ est croissante et que l'on a:

(27)

^(0) 1

"MO

y
"A (21)

lim sup
^ (0

< + 00

Définissons alors une suite de nombres réels par

(Vn >2)an

nr
si 13/2 ,/> / m* \-l < n — m3 <0

3\ -1
+ iA(—) si 0<n-m3<m3/2^(|-

si (VmcN) I n — m3 | > m3f2\l/
m*

Il est clair que l'on a pour tout entier « > 2

I a„ I < 1
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De plus, pour toute constante positive on a:

Y a„(l + o (1)),
m3 ^ n^- m3 + cm 3 /2

on voit donc qu'il n'existe aucun réel a tel que l'on ait

(Vc>0) Yj an — X + 0 (-yjx)
x < x + c -/x

Il reste à montrer que an tend vers 0 au sens de Borel.

Puisque an o (<\/n il suffit de montrer (cf. [6]) que pour m tendant

vers l'infini on a:

1 + 00 f h2 1

(28) —f= £ am+h exp < — -— > o(l)

où l'on a posé am+h 0 pour m + h < 0.

Comme an O (\jj («)) on vérifie facilement la majoration

1 v I I f ^L I am + h I eXP " —\j^ |/i|>Vmi/t(m)/4 2 Ht

O^(m) exp | —
1 j (X) •

Or l'intervalle [m — \]/ (m)1/4, m + <1/m \jj (m)1/4] contient, pour m

assez grand, au plus un cube k3; on voit donc que (28) est une conséquence
de

lim sup I F (m, k) | 0
fc"*00 j m-fc3 j <2fc3/2^ (fc3) i

avec

1 ^ f 1 (k3 - m + h)2
F (m, fc) —p= Z ak3 + k exp < —

7m |fc3_m+ft ] ^fc3/2^(/c3)l/4 (2 m

On a pour | m - &3 | < k3/2 ij/ (k3)* - k3'2 \j/ (k3/!)'1

\j/(k3l2) f 1 (k3 — m)2)
F (m, k)(l+o(l)) exp j - j x
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f k2") T f (fc3-m) I
x > exp <J — — exp >

o^A^t3/2^(t3/2)-i 1 2m J L l m J

comme

exp I ± h— — I exp { (k3)~3/4) } 1 + o (1),

la conclusion en découle.

Pour I m -k3| > k3/2 ^ (A:3)* - k3/2 \j/ (k3/2)_1, on a trivialement

F (m, k) O ^exp | — 0 + o (1)^ J\\j (m)j^ o(l), ce qui achève la

démonstration.
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