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SUR LE PROCEDE DE SOMMATION DE BOREL
ET LA REPARTITION
DU NOMBRE DES FACTEURS PREMIERS
DES ENTIERS

par Gérald TENENBAUM

1. INTRODUCTION

Soit £ un ensemble non vide de nombres premiers. Pour tout entier
naturel positif n, désignons par Qp (n) et par wg (n) le nombre des facteurs
premiers de n qui appartiennent a E, comptés respectivement avec et sans
leur ordre de multiplicité. Dans le cas ol E est I’ensemble de tous les
nombres premiers nous écrivons Qg (n) = Q (n) et wg (n) = w (n).

Pour toute suite d’entiers &/, nous notons A4 la fonction sommatoire
définie par
0 si x<0O
card {n <x:nes} si x>0.

(VxeR) AX) = {
Enfin, étant données une suite d’entiers o/ et une fonction arithmétique a
valeurs entiéres g, nous notons

g7 () = {neN\{0}:g(me}

la suite croissante des entiers positifs # tels que g (1) appartienne a .

Hubert Delange a montré dans [1] que, si o est une progression arithmé-
tique et sig = Q ou w, alors g~ * () posséde une densité naturelle qui est
celle de o7 !). Jean-Marc Deshouillers [3] a généralisé ce résultat au cas ol
la suite .o/ vérifie

A(x) = ax + o({/x)

D) Dans le cas de la fonction (3, ce résultat avait déja été établi par S. S. Pillai
«3Generahzat10n of a theorem of Mangoldt » Proc. Indian Acad. Sc. Sect. A, 11 (1940),
13-20.
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pour un certain « de l'intervalle [0, 1]. 11 a également montré, dans le cas
ol .« est de densité inférieure nulle, que Q™! (&) ou w ™! () posséde une
densité (nécessairement nulle) si et seulement si 'on a

(Ve>0) Ax+efx) = AX) + o((Yx).

Nous nous proposons d’étendre ces résultats de la maniére suivante:

THEOREME 1. Soit E un ensemble de nombres premiers tel que

peE p

On pose g = Q ou g = wy.

Alors, une condition nécessaire et suffisante sur la suite </ pour que
g~ 1 (4) posséde une densité naturelle est I’existence d’un réel o de [0,1]
tel que

(1) (Ve>0) A(x+eyx) — A(x) = cay/x + o(Yx).
De plus, dans ce cas, les suites o/ et g~ ' () ont pour densité o.

Rappelons qu’une suite complexe (a,),~.o converge vers un nombre
complexe a au sens de Borel si ’on a pour x infini

B oe] xn

(2) e Y a, — =a+o(l).

n—0 n!

En posant, pour x >0,

A(X) = Z d, »

n=x

on voit que la relation (2) équivaut a la relation

0 t

- X x .
(3) e gmdA(t)—OC-FO(l)

ou I' désigne la fonction eulérienne.

Moins par souci de généralité que de commodité et clarté d’exposition,
nous avons préféré le cadre de l'intégrale de Stieltjes a celui des séries.
Ainsi, Iespace des suites complexes disparaitra-t-il au profit de celui des
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fonctions & valeurs complexes et a variation bornée sur tout intervalle
borné (nous noterons ¥~ cet espace fonctionnel) et la notion de convergence
au sens de Borel sera-t-elle utilisée sous la forme (3).

La premiére étape de la preuve du théoréme 1 consiste a remarquer que
Iexistence d’une densité naturelle o« pour g~ * () équivaut a la convergence
vers o au sens de Borel de la fonction caractéristique de &7, ce€ que nous
énongons sous la forme suivante:

THEOREME 2. Si E, g et & gardent la méme signification que dans
[’énoncé du théoréme 1, alors la relation (3) est une condition nécessaire et
suffisante pour que la suite g~ (/) posséde la densité o.

On voit maintenant que le théoréme 1 est une conséquence de ’équiva-
lence des conditions (1) et (3) pour toute fonction 4 de la forme A (x)
= Y a,oua,vautOou l.

n=x

En supposant seulement la suite (a,) bornée, H. Delange [2] a trouvé de
ce résultat une démonstration courte et élégante utilisant la densité dans
L' (R) du sous-espace vectoriel engendré par la famille des fonctions

1
U > exp{ — E(u —h)? }, h décrivant R. De plus il a remarqué que I'on
peut déduire I’équivalence de (1) et (3):

pour la fonction sommatoire d’une suite (a,) bornée, d’un théoréme
taubérien général de Karamata (cf. [9], théoréme II, page 127, appliqué
avec A () = eV?r)

pour la fonction sommatoire d’une suite (a,) majorée ou minorée, d’un
résultat de Wiener et Martin (cf. [12], théorémes 1 et 2 appliqués avec

a
F(x) = €* et en remplagant a, par—";) utilisant un théoréme taubérien
n!

de Wiener [11].

Nous avons obtenu les résultats suivants par une méthode directe,
inspirée pour la partie taubérienne de celle de Hardy et Littlewood dans [6].

THEOREME 3. Pour toute fonction A de ¥ la relation (1) implique la
relation (3).

THEOREME 4. Soit A une fonction de V.




— 228 —

S'"'il existe un nombre complexe B et une fonction x —> B (x) satisfaisant
a la relation

(Ve>0)  B(x+cyx) — B(x) = cB % + 0(JX)

tels que la fonction xvw> A (x) + B(x) soit a parties réelle et imaginaire
monotones, alors la relation (3) implique la relation (1).

Remarquons que la classe des fonctions x +> B (x) satisfaisant a la
condition du théoréme 4 est assez étendue; elle contient en effet toutes les
fonctions du type

B(x) = By (x) + o(/x)

ou B, est une fonction dérivable telle que, quand x tend vers I'infini,

Bi(x) =B +0(1).

Dans le cas ou A4 est la fonction sommatoire d’une suite a,, on obtient,
en prenant B (x) = A [x], le corollaire suivant qui, associé aux théorémes 2
et 3, implique le théoréme 1.

COROLLAIRE. Soit (a,) une suite de nombres réels. S’il existe un nombre
réel A tel que l’on ait pour n assez grand

a, = —2

et si (a,) tend vers o au sens de Borel, soit

(B) lim e ) a,,x— = o
X n=0 I’l!
alors on a
(C) (Ve >0) > a, = co/x + o(Yx).

X =n<x +cJ;

Il était connu depuis longtemps (voir [6]) que la condition

Y a, = ax + o(x)

n=x
(qui implique (C)) est suffisante pour assurer la convergence de (a,) vers o
au sens de Borel. Cependant, nous n’avons trouvé nulle part, dans la
littérature consacrée a ce sujet, explicitement énoncé, un théoréme d’équiva-
lence des conditions (B) et (C).




— 229 —

Le théoréme suivant montre que la restriction a, > — 2 a laquelle est
assujettie I'implication (B) = (C) est optimale.

THEOREME 5. Pour toute fonction réelle t v (¢t) tendant vers l'infini
il existe une suite réelle (a,) satisfaisant aux trois propriétés suivantes :

@  (VneN) |a,| <y @

(b)  (a,) tend vers O au sens de Borel

1
(¢) Pour toute constante positive ¢ [’expression —= Y a, ne tend

\/X X=n<x4c Jx
pas vers 0 lorsque x tend vers l’infini.

2. UN LEMME UTILE

Pour tout couple (x, ¢) de réels positifs, nous posons:

xt

r+1)°

L’énoncé ci-dessous rassemble les principales propriétés de la fonction
¢ (x,t). La démonstration, utilisant la formule de Stirling et d’autres
résultats classiques concernant la fonction I, est laissée au lecteur.

@ (xs t) =e 7

LEMME 1.

(i) pour x > 0 et |t — x| <x*3, ona:

o) = —exp {— (—t_x)z} <1+o (M) +0 (lf—xP))
21X s X "

(i) pour x > 0 et |t — x| <"

on a

0 —
_(p(x,t) = QO <1ixj . (p(x,t)>
ot X

(i1i) pour tout réel positif x, la fonction partielle t > @ (x, t) est positive et
atteint son maximum absolu en un point t (x) de l’intervalle [x — 1, x];
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elle est croissante sur l’intervalle [0, t (x)[ et décroissante sur [’inter-
valle 1t (x), + oo].

: , 2
(iv) pour tout réel ¢ satisfaisant a l’inégalité 5 << = et tout réel positif |

g, ona:
fle-x1>x @ (x, 0 dt = O(exp { —=x*717°})
(v) on a pour x infini

oj?go(x,t)dt =140 (e 7).

3. DEMONSTRATION DU THEOREME 2

E et g gardant la méme signification que dans ’énoncé du théoréme 1,
posons pour x réel positif et m entier

1
y=yx = 2 =
p=x P
peE
et
N(m,x) =card {n <x:g(n) = m}.
Halasz a démontré dans [4] que 'on a, sous la seule hypothese y (x) - + oo,
pour tout réel 6 satisfaisant 2 0 < o <1,

(4) N(m,x) = x¢(y, m) {1+0 <]m_y|>+0<——1—_>},
y JY

m
uniformément pour 6§ < — <2 —dety >2.
Y

Notant # = g~ ' (), on a pour tout x positif

B(x): =card{n<x:ned} = )Y N(m,x).

mesd

2
Fixons alors un nombre réel & dans I'intervalle ] 53 [ ,ona:

(5) B(x) = Y N(@mx)+0( Y N(m,x).

lmfl;fd;yf Ladiss
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Dans le cas particulier ot o/ est la suite de tous les entiers on a d’une part
B (x) = [x] et d’autre part, compte tenu de (4),

Y N(m,x) x<1+0<—11—_—5>> Y e(y,m)
}m—yléyé Y ]m—ylé.vé
1 S >
{is0( ) ] urors ol
1
x<1+0<y1“5>>’

en vertu des assertions (iv) et (v) du lemme 1. Cela montre que pour toute
suite 7 le terme reste de (5) est majoré par

I

En reportant dans (5) et en utilisant (4) on obtient

Bi’ﬂ=(1+o(f_§)> S (. m) +o(l)
X y mesf

]m—yléyZj

= (1+0(1))(0§ @ (y,)dA®) + o(1)) + o (1)

ce qui achéve la démonstration du théoréme 2.

4. LE RESULTAT ABELIEN

Le lemme suivant, dont la démonstration nous a été suggérée par
H. Delange, nous sera utile.

LemMME 2. Soit A une fonction mesurable complexe vérifiant (1). Alors
la relation (1) a lieu uniformément en ¢ sur tout compact.

Démonstration. On peut supposer sans restreindre la généralité que
I'onaa = 0 dans (1).
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Il suffit de montrer que, pour tout réel positif 4, il y a convergence uni-
A +ex) — AX)

NES
gence uniforme pour 0 < ¢ </ implique la convergence uniforme pour
—h" < ¢ < 0quel que soit 42" €10, A[ du fait que, pour x assez grand on a

forme de vers 0 pour 0 << ¢ < h. En effet, la conver-

Ve(—h <ec<0) x+c\/>_c<x<x+c\/§+h\/+c\/;
=x + (h+c)/x + 0(1).

Fixons donc deux réels positifs % et e.
Pour tout x > 0 on désigne par I, Uintervalle [x, x + 2h+4/x] et par E,
I’ensemble des 7 de I, satisfaisant a

|A() —Ax) | > -—w\-/—i Jx

On note E, I’ensemble des réels ¢ de [0, 2A] satisfaisant a

| A(x+eyx) —A() | >

1 +8\/Z’Z VX

Il est clair que E, et E, sont mesurables et que I’on a, en notant y la mesure
de Lebesgue,

u(Ey) = Jxu(Ey) .
Maintenant le théoréme de Lebesgue sur la convergence dominée

appliqué a la fonction caractéristique de E. montre que u (E;) = o ().
11 existe donc un réel x,, que I’'on peut supposer > h?, tel que

h _
Vi >x)  p(E) < gyx.
On voit alors que pour x > x, on a:

A(x +cx) — A(x)

— <&
NE:

Ve(0 <c<h)

En effet, des inégalités
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u(Imex+cJ;) (2]’1—0) \/x h /x

et

h h — h h
b <his b i )

b“

—(14+42) Jx <hyx

3

on déduit Uexistence d’au moins un ¢ appartenant a I, N I, .y% et n’ap-
partenant pas a E, U E,, .y5. D’aprés la définition de E, on obtient

|4 =A@ | <

Al

et

|A(t)—A(x+c\,/§)|\ \/j\/x—}—h\/x

€

[AG) = AGc+ey®) [ < 73 (Jx+Vx+hJX) < eyx.

Remarque. La démonstration précédente est une variante de celle qui a
été utilisée par Delange ') pour établir le fait suivant, déja signalé par
Karamata 2):

Si A est une fonction a croissance lente, c’est-a-dire satisfaisant a

A (ax)
A (x)

(Va > 1) =1+o0(1),

alors cette derniére relation a lieu uniformément en a sur tout compact
de [1, + ool.
Nous pouvons maintenant établir le théoréeme 3.
Soit, donc, 4 une fonction de ¥~ satisfaisant a la relation (1). L’assertion
(v) du lemme 1 montre que I’on peut, sans restreindre la généralité, supposer
= 0, soit
(Ve>0) A(x+cx) — Ax) = o({/x).

1) H. Delange, « Sur un théoreme de Karamata », Bull. Sc. Math. (2) 79 (1955),
1-4.

%) J. Karamata, « Sur un mode de croissance réguliére des fonctions », Mathematica 4
(1930), 38-53.

L’Enseignement mathém., t. XXVI, fasc. 3-4. 16
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Comme cette relation, d’aprés le lemme 2, est uniforme en ¢ sur tout com-
pact, nous I’écrirons sous la forme:

(6) A(x+0([x)) — A(x) = o(x).
En particulier, on a:

AX) = 3T A(P+k) —AK =K +0(/x) = Y ok + o(JX)

k=+vx k=x

d’ou:
(7) Ax) = o(x).

Maintenant, décomposons l'intégrale du premier membre de (3) en une
somme, Soit:

j o(x,)dA() =1, +1, + 1,
0

ou I,, I,, I, correspondent respectivement aux domaines d’intégration
1> £2 3

[0, x— /X[, [x—+/X, x4+ /X[ et [x+./x, +o0].

Une intégration par parties suffit pour majorer ] I, [:

x+Vx x++/x aqo
I, =[A® ¢ (x,0] ~ —J _A(t);?(x,t)dt
x—+x x—vx {

x+Vx x+Vx do
[0 = A@)eeo] | (AW - 40) 2 s

la conclusion I, = o (1) découle alors de (6) et de la majoration

0@ j 1
—(x,t) | = 0| -

ot (1) ' (x)

qui est une conséquence des assertions (i) et (ii) du lemme 1.

Pour majorer l I, + I ] , définissons une suite (x),., de nombres réels
par les formules:

sup

[t—x | =Vx

X, = X

Xy = Xr—1 + \/Xk_l (k:" il, iz, )
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on vérifie facilement 1'inégalité

1 k
x+k\/§\<\xk<x(1+\~/z> (k=4+1, £2,..).
X
, . . : 1 2
Un réel ¢ étant donné dans l'intervalle 3030 on pose
m = [x°7%]
de sorte que ’on a pour x assez grand
Xty = X i xé + O(X%) .

On décompose alors I, + I en une somme:

®) I+ 1, ={g_m + ot ndA@m)

*k+1

4 Y [ okx,n0dA@).

—m=k=m-1 x
k#—1,0

D’une part on a, quitte a supposer 4 (0) = 0,

(4] Hetndd®} = [oG,0AD]

X _m + 6
—{({ +§ }{A(t)gg(x,t)dt};

d’aprés I’assertion (i) du lemme 1 et la relation (7) il vient:

QXX ) AX L) = o(1)

et d’apres l’assertion (iii) du lemme 1 et la relation (7) on a:

{ X_m + o 0 ¥—m
){f + | }{A(t)é:i(x, t)}dt <o(x- ) [ (x, D]
0 X 0

9)

A

+ I — t
0 (Jxm Py (x, )dt)

= 00D {0 (%) = e}t 0 (e (ex) + | 0 (x, 1) d)
L = 0(1). "
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D’autre part, puisqu’aucun des x, (k= +1, +2,...) n’appartient a Dinter-
valle [x — 1, x] la formule de la moyenne implique

*k+1

Vik(—-m<k<m-1,k+#—1,0) H (p(x,t)dA(t)l
p;

< @ (X, Xgpp) sup l A — AXerp) l

X =t=Xp 4+ 1

aveci = 1sik>1leti =0sik << —2.
D’apres (6) on a donc:

*k+1

Vk(—-m<k<m-1,k#—1,0) |j qn(x,t)dA(t)[
== 0(\/_>E(P(x:xk+i))

d’ou, en utilisant I’assertion (i) du lemme 1,

*k+ 1
(10) i 4;;:4 , | @ (x, 1) dA (1) |
, =
:o(_ ékz -lexp{-—j(l—i—o(l))})
_ ot k#—1,0

En reportant (10) et (9) dans (8), on obtient I; + I; = o (1), ce qui achéve
la démonstration.

5. LE RESULTAT TAUBERIEN

Dans cette section, nous nous proposons d’établir le théoréme 4. Nous
supposerons, dans toute la démonstration, A réelle et croissante; grace au
théoréme 3, le cas général se déduit aisément de ce pas particulier.

Nous noterons ¥, I'ensemble des fonctions réelles croissantes, définies
sur ’ensemble des réels positifs ou nuls et prolongées par 0 sur I’ensemble
des réels négatifs.

Les méthodes de démonstration que nous utiliserons sont fondées sur
des idées de Hardy et Littlewood ([6], [7]) dont on trouvera un exposé¢ dans
le chapitre 9 de [5]. En particulier, le point crucial consiste & appliquer au
bon moment le théoréme de Vitali, que nous énongons pour mémoire:
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Soit O un domaine du plan complexe et (f,) une famille de fonctions holo-
morphes sur O, bornée pour la topologie de la convergence sur tout compact
de O et convergeant vers une fonction holomorphe f, définie sur O, sur une
suite de points ayant un point d’accumulation dans 0. Alors (f,) converge
vers f uniformément sur tout compact de 0.

LEMME 3. Pour toute fonction A de ¥ ., les conditions suivantes sont
équivalentes :

3) [ oG, 0dA®) = a + o(1)
0
1 + o0 h2
(11) V%J_mexp{—z}dA(x—}-h\/x) =a+o0(l).

Dans [6], Hardy et Littlewood ont montré I’équivalence des conditions (3)
et (11) dans le cas ou A (¢) est la fonction sommatoire d’une suite
a, = o(+/n); Hyslop [8] a généralisé ce résultat au cas olia, = O (n¥)
pour un réel arbitraire K. Bien que le résultat du lemme 3 ne soit pas une
conséquence de ces travaux antérieurs, la démonstration ne met en ceuvre
aucun moyen nouveau; nous nous contenterons d’exposer les grandes
lignes de la preuve de I'implication (3) = (11), le lecteur n’aura aucune
peine, s’il le désire, & compléter la démonstration.

Comme la mesure dA4 (¢) est positive on a
x+Vx

| 0e0ddD <] ¢(0dd®) = 0,

X

et comme, d’apres le lemme 1, il existe une constante positive a telle que

a
NES

I'on ait pour x assez grand et 7 dans [x, x +4/x], ¢ (x, 1) > on voit

que

A +x) —AKx) =0 (V%) .
Maintenant il est facile d’en déduire que I’on a uniformément pour y >4/x
(12) Ax+y) — A(x) = 0(y),
et en particulier

(13) AX) = 0(x).
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1 2
Soit alors & un réel fixé dans l’intervalle ]E’ 3—[ ; on déduit de (13)

et des estimations du lemme 1 la majoration

[ e PE0dA0 = o
t—x | >x
d’ou finalement:
[ oG, 0)dA@) = | ¢ (x,)dA(t) + o(1)
Y ]t—x]<x§
1 1(t—x)2}
S exp { — — dA(f) + R
J2nx ]jt—x]<x€ { 2 X ® '
+ Ry + 0(1)
avec
1 14]t— 1 (t—x)?
R, =0 <—J »il—_-x—lexp {-— _S_ﬂ} dA(t)>
X Jx 2 x
|t—x | < x&
et
1 |t —x|? 1(t—x)>2
R, = O(;J TP exp{-—z " }dA(t)).
|t— x| <=x5

Comme dA () est positive et que les fonctions hw|#h| e h¥2 et
h | h|® e™"*2 sont bornées sur la droite réelle, on voit que R; et R, sont

o (A(x +x°) — A(x —x%)

) , c’est-a-dire o (1) d’apres (12).
X

En remarquant finalement que

1 1 (t —x)>
\"/ij exp { - 5“ xx) }dA(t) — o(1),

on obtient la conclusion souhaitée.
Le résultat suivant est ’analogue d’un théoréme de Hardy et Little-
wood ([6], théoréme 4.3).

[t—x[>x'§

LeMME 4. Soit A une fonction de v .. Sil’intégrale

(14) AG) = y“j) e~ dA (1)




— 239 —

converge pour y > y,, alors elle définit une fonction analytique de 'y sur
l’intervalle 1y,, + o[, on a pour tout y > y, et tout entier non négatif n

a'4 s EO (=" te ¥ (n—ty)dA(Y)

0]

et, pour tout réel positif k, les deux assertions suivantes sont équivalentes :

(i) lintégrale (14) est convergente pour tout réel positif 'y et l'on a

(¢ 0] ( k)n d"A
15 — (k) =
(15) ngo n! dy" (k) =«
(i1) om a pour x infini
D +w
k kh? _
(16) \/énx J exp {— -2} dA(x +hyx) = o + o(1)

- 0

Démonstration. Les deux premiéres assertions concernant 'intégrale (14)
constituent un résultat classique sur la transformation de Laplace-Stieltjes
(voir par exemple Widder [10], chapitre II, §5).

Supposons maintenant que A satisfasse a la condition (i). On a

io S ij R Z R iyt etk da
- dm k] e Z te—n) & )n dA (1)
v o 0 n=0
Y T v (ki Tt (k)"
) vlinzo kg : { nm1(n—1)1 Z_ }dA(t)
_ dim k| e ® )dA()

En posant ¥ (x, 1) = k ¢ (tk, v) pour v = [k x], on voit donc que (15)
équivaut a

(17) I W(x, ) dA(f) = o + o(1).

1 2
Un réel ¢ étant fixé dans I'intervalle ]5, 2 {, on verifie que 1’on a pour

|t—x| < x°
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(18) Y (x,1) = i exp {-— k y (t—x)2}<1+0<]t—2x|3>> .
2Ix 2 X X

x+vx
Comme (17) implique que lintégrale | Y (x,1) dA4 (t) est bornée on

X

en déduit, comme dans la démonstration du lemme 3, la majoration

(19) Ax) = 0(x);
cela implique
|} éw (x,)dA() = o(1),
[t——x[éx
1  k(t—x)* _ (1
jilt—xl>x§exp {_5 & }dA(t) 7

et finalement (16), en utilisant (I18) et le changement de variable
t = x + hy/x.

Pour établir 'implication réciproque (ii) = (i), il suffit de remonter Ies
calculs précédents, apres avoir remarqué que (16) implique (19) et donc la
convergence de I'intégrale (14) pour tout y positif.

LEMME 5. Soit A une fonction de V" .
Si A vérifie (16) pour un nombre réel positif k, il en est de méme pour
tout nombre k' satisfaisant a l’inégalité 0 < k' < k.

Démonstration. On utilise I’équivalence énoncée au lemme 4; le résultat
est une conséquence immédiate du théoréme suivant, di a Hardy et Little-
wood [6]:

Si la série entiere

FG) =3 up

n=0
converge en un point x, de son cercle de convergence et si 0 appartient a
10, 1[, alors la série de Taylor de f(0x,+ (1—6) x,), soit

@ 1 dn
20 e

(0x,) {(1=0)x, }",

n! dx"
converge également vers f (x,).

11 suffit, en effet, d’appliquer le théoréme a la série entiére définie pour
]xl < 1 par
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0 (__k)ndnA(k) )
- X

J () nZ:0 nl dy

qui converge en x, = 1.

Comme A est analytique sur ]0, + co [, on a pour tout x dans ]O, 1 [

fx) = A(k(1-x)
et donc, en posant k& = k (1—0),

dnf dnﬁ
0) =(— k)" — (k') .
a0 =(=0 dy,,(c)

Le résultat en découle, en remplagant dans (20).

Nous pouvons maintenant aborder la derniére étape de la démonstra-
tion du théoréme 4.

Soit donc 4 une fonction de ¥, satisfaisant a (3). Nous allons montrer
que la suite de fonctions (g,,),,~. 1 définie par

(VmeN*, Vi>0) g, = :/1: {A(m+t/m) — A(m—t/m)}
m

converge simplement vers la fonction ¢ + 2uf; la croissance de 4 permettra
alors d’en déduire (1).

1
D’apres les lemmes 3 et 5, on a, pour tout réel k£ de l’intervalle—JO, 5[,

lorsque m tend vers I'infini

— + o

1) K f exp { —kh2}dA(m+hJm) = a + o(1).
mTm -

De plus, comme la mesure dA4 (t) est positive, la suite des fonctions définies
sur le demi-plan 4" = {ze C : Rez > 0} par

(22) fo(2= [~ ;wexp { —zh*}dA(m+h/m)

Tm -
est bornée pour la topologie de la convergence uniforme sur tout compact
de A. Comme f,, (z) tend vers o pour z = k e ]O,%[, le théoréme de
Vitali implique
(23) (Vzed') fn(2) =a+o0(1).
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En intégrant par parties I'intégrale figurant au second membre de (22), la
relation (23) devient:

2,312

(Vzex) }O hg,(h) exp { —zh*}dh = \/— +o0(1).

Soit y un réel positif; prenons z = y 2 et effectuons le changement de variable
= hy, on obtient:

(24) (Vy>0) }O tg, <_t_> e P dt = “\7 +0(1).
0 y 2y

En particulier, il existe une constante positive M telle que ’on ait pour m
assez grand

e}

[ tgn@®edt <M

0

Comme g,, est positive et croissante en ¢, cela implique

(V2>0) g, <M{| te*dt}™! = 2Me™.

t
La famille des fonctions ¢t — tg,, (—) e~ est donc, pour chaque y fixé supé-
y

rieur a 1, majorée par une fonction intégrable pour la mesure de Lebesgue.
Maintenant, de toute suite d’entiers tendant vers l'infini, on peut
extraire, par un procédé diagonal, une sous-suite (m;) telle que la suite
(9m,)i=o converge simplement sur I'ensemble des rationnels positifs vers
une fonction g, définie sur Q. et croissante. On peut la prolonger en une
fonction croissante définie sur I’ensemble des réels positifs et continue a
gauche. Notons encore g ce prolongement. L’ensemble D des points de
discontinuité de g est dénombrable et, pour tout réel positif ¢ n’apparte-
nant pas & D et tout couple (7, s) de rationnels tel que r < ¢ < s, on a:

(Viz0)  gu,(r) <gm; () <G, (5) .

En faisant tendre i vers I'infini puis r et s vers ¢, on voit que (g,,,) converge
vers g presque partout. On peut donc appliquer le théoréme de Lebesgue

: I\ _ , f e :
a la suite des fonctions > 1 g,,. <—> e t? pour y fixé€ supérieur a 1; on obtient
y

(25) (Vy>1) Of te"’zg <~t-> dt = vre .
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En faisant le changement de variable 72 = u y?, il vient

\/Eoc.

Vy>1) | e®g(Ju)du = >
0 y
L’injectivité de la transformation de Laplace implique donc ’égalité

(26) g (Ju) = 2o0/u

pour presque tout réel positif u. Comme g est croissante, on voit finalement
que (26) a lieu pour tout u.

Nous avons donc montré que, de toute suite d’entiers tendant vers + oo,
on peut extraire une sous-suite (m1;) telle que (g,,,) tende simplement vers la
fonction ¢ > 2az. Cela implique la conclusion annoncée.

6. LE CONTRE EXEMPLE

Nous nous proposons ici d’établir le théoréme 5.
Soit ¢ > (¢) une fonction réelle tendant vers -+ co; nous pouvons sans
restreindre la généralité supposer que y est croissante et que ’on a:

[ ) =1
- (O = o)
lim sup K(Zf)— < 4+
{ t—o0 lp(t)

Définissons alors une suite de nombres réels par

3 3
| —1//(%—) si —m3/zt//<%)“1<n—m3 <0
m> n3\ "1
(Vn>2)a, =1 -I—lﬁ(—i) si O<n——m3<m3/2t//<%>
. 3 m3\"1
| 0 si. (VmeN) [n—m?| > m*?y > -

I1 est clair que I’on a pour tout entier n > 2

<Y (n).

[ an




244 —

De plus, pour toute constante positive ¢, on a:
a, = m>/? (1 +0 (1)) ’
m3 éném3 + cm3/2
on voit donc qu’il n’existe aucun réel « tel que 'on ait
(Ve >0) Y a, = ca\/x+0(/x).
X =n<x-+ c«/?c

Il reste & montrer que a, tend vers 0 au sens de Borel.
Puisque a, = o (1/n) il suffit de montrer (cf. [6]) que pour m tendant
vers I'infini on a:

(28) I/iﬁ_h:iw A, in EXP {— E_} = 0(1)

~ w 2m
ou I’on a posé a = Qpourm + h < 0.
p m-+h

Comme a, = O (Y (n)) on vérifie facilement la majoration

S | apen] exp {_ _”_}

1
\/% |hl>*/;¢(m)% 2n’l

|
= 0<lﬁ(m) exp { — 5\/¢(m)}> = o0(1).

Or lintervalle [m — /my (m)'/*, m ++/my (m)'/*] contient, pour m
assez grand, au plus un cube k*; on voit donc que (28) est une conséquence
de

lim sup |F(m,k)] =0,
k= m— k3] <2k3/2y k3) F ‘
avee
1 (k? —m +h)?
F(m,k) = —= a3 exXpld — — )
\/m ]k3_m+hlék3/2¢,(k3)1/4 2 m

On a pour | m — k*| < k32 ¢ (k%)F — k32 (k3/2)™*

F(m,k) = (1+o0(1)) % exp {— %(—If;—m)-} X
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h? k3 —m
x ) exp { - #} [exp { o L___L}
0<h=<k3/2y&3/p ~1 2m m

h(k>—m)] |
]

exp { = hgf—};—@} = exp {OWE) M} = 1+ 0(D),

comme

la conclusion en découle.
Pour |m — k3| > k*2y (k*)* — k¥?§ (k3)2)"", on a trivialement

F(m,k) = O <exp {— (% +o0 (l)) JW}) = o0 (1), ce qui achéve la dé-

monstration.
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