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EQUIVALENCE DES CONDITIONS 2) ET 1°)

Le support de we n I (4,¢ (D)) est un compact de 4, ouvert
De2

dans 4 d’aprés le principe du prolongement analytique et disjoint de P
puisque @ a un zéro d’ordre arbitraire en chaque point de P. Ainsi, 2)
implique 1’). Conséquence:

Lorsque la surface X est ouverte, I' (X, &) # 0.

Pour le voir, on utilise 4) == 1) avec P = @, en prenant pour U un
ouvert de X isomorphe par exemple a un disque du plan complexe, de sorte
que I' (U, &) # 0.

Montrons maintenant par contraposition que 1’) implique 2). Soit K
un compact non vide de A ouvert dans 4 et disjoint de P et soit ¥ un voisi-
nage ouvert de K dans X. On peut supposer V distinct de X lorsque X est
compacte, car alors P est non vide, donc K # X. Soit V, une composante
connexe de V' qui rencontre K. Comme V, est une surface de Riemann

ouverte, il existe « non nul dans I" (V,, &). Prolongeant « a V et restreignant

la section ainsi obtenue & K, on arrive a un f non nul dans I" (K, &). On

construit alors un élément non nul y de N I, (4, ¢ (D)) en prenant
De2

y|K=Bety|4A\K = 0.

L’équivalence entre 5) et 3) se raméne a 1’équivalence entre 1) et 3) en
remplacant X par X\ P et P par @ (que X\ P ne soit pas nécessairement
connexe ne crée pas de difficulté).

Remarque. Les détails techniques de la preuve donnée ont peut-étre
masqueé le fait suivant: le seul théoréme d’analyse complexe utilisé a été la
dualité de Serre. Ceci apparait plus clairement si ’on se restreint au cas
P = ¢ (i.e. au théor¢me d’approximation de Behnke-Stein). De ce point
de vue, il serait souhaitable d’avoir un traitement direct de la dualité de
Serre en dimension 1 dans le cas ouvert, indépendant du fait qu’une surface
de Riemann ouverte est une variété de Stein.
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