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partie de A. Lorsque X est compacte, on suppose P non vide. Les conditions
suivantes sont équivalentes :

1) Toute section holomorphe de £ au-dessus de U peut être approchée,

uniformément sur les compacts de U, par des sections méromorphes de

Ç au-dessus de X à pôles contenus dans P seulement.

2) Tout compact non vide de A ouvert dans A contient un point de P.

3) Le complémentaire A\P de l'adhérence de P dans A n'a pas de

composante connexe compacte.

4) L'inclusion de U dans X\P induit un monomorphisme H1 (U)
— H1 (X\P), où H1 désigne l'homologie singulière entière (par exem-

pie).

5) Toute section holomorphe de Ç au-dessus de U peut être approchée,

uniformément sur les compacts de U, par des sections holomorphes de

£ au-dessus de X\P.

Remarque. Lorsque les composantes connexes de A sont ouvertes dans

A, par exemple lorsqu'elles sont en nombre fini, la condition 2) peut être

remplacée par:

toute composante connexe compacte de A contient un point de P.

En effet, les compacts de A ouverts dans A sont alors les réunions finies de

composantes connexes compactes de A.

Equivalence des conditions topologiques 2), 3) et 4)

Lemme. Pour qu 'un espace localement compact Y n 'ait pas de composante

connexe compacte, ilfaut et il suffit que Y ne contienne pas de compact
ouvert non vide.

C'est un conséquence des deux énoncés suivants :

— Une composante connexe d'un compact ouvert dans Y est une composante

connexe compacte de Y.

— Toute composante connexe compacte de Y est contenue dans un compact
ouvert [2, TGII, 32, Corollaire de la Proposition 6],

Comme tout compact ouvert dans A qui coupe P coupe déjà P, on peut

remplacer P par P dans la condition 2), qui se reformule donc: il n'y a pas
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de compact non vide ouvert dans A\P. D'après le lemme, ceci équivaut

à la condition 3).

Pour vérifier l'équivalence de 3) et 4), considérons la suite exacte de

cohomologie à supports compacts associée au sous-espace fermé A \ P

de X\P
H°c (X\F,Z) H°c (A\F,Z) -> Hl Z) -> H\ Z)

[3, Théorème 4.10.1, p. 190].

Ici, Z désigne le faisceau constant et, pour un espace topologique Y,

H°c (F, Z) est formé des fonctions localement constantes sur Y à support

compact. Le support d'un élément de H°C(Y,Z) est un compact ouvert

dans Y. D'après le lemme, lorsque Y est localement compact, Hc° (Y, Z) 0

si et seulement si Y n'a pas de composante connexe compacte. Ceci montre
d'abord que H°c (X\P, Z) 0. Ensuite, que la condition 3) équivaut à

la nullité de H°c (A \ P, Z) ou encore, d'après l'exactitude de la suite précédente,

à l'injectivité de H\ (U, Z) -» H\ (X\P, Z). Par dualité de Poincaré,

H\ (U, Z) « Hx (U) et Hl (X\ P, Z) ^ H, (X\P),

ce qui achève la preuve de l'équivalence entre 3) et 4).

Utilisation de la dualité de Serre

Désignons par Q) l'ensemble des diviseurs effectifs sur X à support
contenu dans P. Pour D e Q), soient £ (D) le produit tensoriel de £ avec le

fibré en droites associé à D et S, (D) Horn (£ (Z>), tc), où k est le fibré
cotangent de X. Les sections holomorphes de £ (D) sont interprétés comme
sections méromorphes / de £ telles que div/ > — D et les sections

holomorphes de £ (D) comme sections holomorphes co de £ Horn (£, k)
telles que div co > D.

Considérons la suite exacte de cohomologie à supports compacts
associée au sous-espace fermé A de X

rc (.X:, £ (D)) -* rc(A,£ (D)) -> Hl (U, b -> (X, Ç (D))

[3, Théorème 4.10.1, p. 190], où Fc désigne les sections à support compact
du faisceau des sections holomorphes d'un fibré en droites.
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