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partiede A. Lorsque X est compacte, on suppose P non vide. Les conditions
suivantes sont équivalentes :

1) Toute section holomorphe de & au-dessus de U peut étre approchée,
uniformément sur les compacts de U, par des sections méromorphes de
¢ au-dessus de X a péles contenus dans P seulement.

2) Tout compact non vide de A ouvert dans A contient un point de P.

3) Le complémentaire A\ P de l’adhérence de P dans A n’a pas de
composante connexe compacte.

4) L’inclusion de U dans X\ P induit un monomorphisme H, (U)
— H, (X\ P), ou H, désigne [’homologie singuliére entiére (par exem-
ple).

5) Toute section holomorphe de & au-dessus de U peut étre approchée,

uniformément sur les compacts de U, par des sections holomorphes de
¢ au-dessus de X\ P.

Remarque. Lorsque les composantes connexes de 4 sont ouvertes dans
A, par exemple lorsqu’elles sont en nombre fini, la condition 2) peut €tre
remplacée par:

toute composante connexe compacte de A contient un point de P.

En effet, les compacts de A4 ouverts dans 4 sont alors les réunions finies de
composantes connexes compactes de A.

EQUIVALENCE DES CONDITIONS TOPOLOGIQUES 2), 3) et 4)

LEMME. Pour qu’un espace localement compact Y n’ait pas de compo-
sante connexe compacte, il faut et il suffit que Y ne contienne pas de compact
ouvert non vide.

C’est un conséquence des deux énoncés suivants:

— Une composante connexe d’'un compact ouvert dans Y est une compo-
sante connexe compacte de Y.

— Toute composante connexe compacte de Y est contenue dans un compact
ouvert [2, TG II, 32, Corollaire de la Proposition 6].

Comme tout compact ouvert dans 4 qui coupe P coupe déja P, on peut
remplacer P par P dans la condition 2), qui se reformule donc: il n’y a pas
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de compact non vide ouvert dans A\ P. D’aprés le lemme, ceci équivaut
a la condition 3).

Pour vérifier ’équivalence de 3) et 4), considérons la suite exacte de
cohomologie 4 supports compacts associée au sous-espace fermé 4\ P
de X\ P

H° (X\P,Z)— H%(4\P,Z) » H. (U,Z) > H, (X\ P, Z)

[3, Théoréme 4.10.1, p. 190].

Ici, Z. désigne le faisceau constant et, pour un espace topologique Y,
H® (Y, Z) est formé des fonctions localement constantes sur ¥ a support
compact. Le support d’'un élément de H? (Y, Z) est un compact ouvert
dans Y. D’aprés le lemme, lorsque Y est localement compact, HY(Y,Z) = 0
si et seulement si Y n’a pas de composante connexe compacte. Ceci montre
d’abord que HY (X\ P, Z) = 0. Ensuite, que la condition 3) équivaut a
la nullité de HY (4 \ P, Z) ou encore, d’aprés I'exactitude de la suite précé-
dente, & Pinjectivité de H: (U, Z) - H: (X \ P, Z). Par dualité de Poincaré,

H! (U, Z) ¥~ H (U) et H: (X\P,Z) ~ H, (X\P),

ce qui achéve la preuve de 1’équivalence entre 3) et 4).

UTILISATION DE LA DUALITE DE SERRE

Désignons par £ I’ensemble des diviseurs effectifs sur X a support
contenu dans P. Pour D € 2, soient & (D) le produit tensoriel de & avec le

fibré en droites associé a D et E(D) = Hom (5 (D), zc), ou x est le fibré
cotangent de X. Les sections holomorphes de & (D) sont interprétés comme
sections méromorphes f de & telles que div f > — D et les sections holo-

morphes de E(D) comme sections holomorphes w de E = Hom (&, k)
telles que div w > D.

Considérons la suite exacte de cohomologie & supports compacts
associée au sous-espace fermé 4 de X

I, (X, & (D) - I (4, € (D)) » HL (U, &) - H. (X, £ (D))

[3, Théoréme 4.10.1, p. 190], ol I', désigne les sections & support compact
du faisceau des sections holomorphes d’un fibré en droites.
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