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SUR LE THEOREME D’APPROXIMATION DE RUNGE

par Claude AUDERSET

Cette note a pour but d’unifier et de compléter les diverses versions
connues en dimension 1 du théoréme d’approximation de Runge.

L’énoncé originel de Runge (1885) est le suivant: foute fonction holo-
morphe f sur un ouvert U de la sphére de Riemann posséde une approxima-
tion (uniforme sur les compacts) par des fonctions rationnelles. Ceci reste
correct lorsqu’on impose certaines conditions aux pdles des approximations,
par exemple, quand U ne contient pas le point & I'infini, f posséde une
approximation polynomiale (pas de pbéle a l'infini). Le meilleur résultat
connu dans cette direction est dii & Walsh [6, Theorem 17, p. 26]: pour que
toute fonction holomorphe f sur U posséde une approximation par des
fonctions rationnelles n’ayant de péles que dans un ensemble donné P, il
faut et il suffit que chaque « trou» découpé par U dans la sphére contienne
un point de P. (Un trou est une composante connexe du complémentaire
de U et I’on suppose que P ne rencontre qu’un nombre fini de trous.)

La version la plus célébre du théoréme d’approximation en dimension 1
est celle de Behnke-Stein [1, Satz 6, p. 445]: pour que les fonctions holo-
morphes sur un ouvert U d’une surface de Riemann ouverte X soient approXxi-
mables par des fonctions holomorphes sur X, il faut et il suffit qu’aucune
composante connexe du complémentaire de U ne soit compacte (cf. aussi
[4, p. 239-241], ou d’autres références sont données). Ces mémes auteurs ont
encore démontré [1, Satz 13, p. 456]: chaque fonction holomorphe sur un
ouvert U de la surface de Riemann ouverte X posséde une approximation
par des fonctions méromorphes sur X n’ayant de péles que sur la frontiére
de U. A noter que les versions modernes négligent le cas compact, bien
qu’a lorigine le théoréme de Runge ait été donné pour la sphére.

Le théoréme général suivant est valable pour une surface de Riemann
quelconque X. Méme lorsque X est la sphére ou lorsque X est ouverte (seuls
cas considérés jusqu’ici), il est plus précis que les résultats qui viennent
d’€tre rappelés.

THEOREME. Soient X une surface de Riemann, & un fibré en droites
holomorphe sur X, U un ouvert de X, de complémentaire A, et P une
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partiede A. Lorsque X est compacte, on suppose P non vide. Les conditions
suivantes sont équivalentes :

1) Toute section holomorphe de & au-dessus de U peut étre approchée,
uniformément sur les compacts de U, par des sections méromorphes de
¢ au-dessus de X a péles contenus dans P seulement.

2) Tout compact non vide de A ouvert dans A contient un point de P.

3) Le complémentaire A\ P de l’adhérence de P dans A n’a pas de
composante connexe compacte.

4) L’inclusion de U dans X\ P induit un monomorphisme H, (U)
— H, (X\ P), ou H, désigne [’homologie singuliére entiére (par exem-
ple).

5) Toute section holomorphe de & au-dessus de U peut étre approchée,

uniformément sur les compacts de U, par des sections holomorphes de
¢ au-dessus de X\ P.

Remarque. Lorsque les composantes connexes de 4 sont ouvertes dans
A, par exemple lorsqu’elles sont en nombre fini, la condition 2) peut €tre
remplacée par:

toute composante connexe compacte de A contient un point de P.

En effet, les compacts de A4 ouverts dans 4 sont alors les réunions finies de
composantes connexes compactes de A.

EQUIVALENCE DES CONDITIONS TOPOLOGIQUES 2), 3) et 4)

LEMME. Pour qu’un espace localement compact Y n’ait pas de compo-
sante connexe compacte, il faut et il suffit que Y ne contienne pas de compact
ouvert non vide.

C’est un conséquence des deux énoncés suivants:

— Une composante connexe d’'un compact ouvert dans Y est une compo-
sante connexe compacte de Y.

— Toute composante connexe compacte de Y est contenue dans un compact
ouvert [2, TG II, 32, Corollaire de la Proposition 6].

Comme tout compact ouvert dans 4 qui coupe P coupe déja P, on peut
remplacer P par P dans la condition 2), qui se reformule donc: il n’y a pas
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de compact non vide ouvert dans A\ P. D’aprés le lemme, ceci équivaut
a la condition 3).

Pour vérifier ’équivalence de 3) et 4), considérons la suite exacte de
cohomologie 4 supports compacts associée au sous-espace fermé 4\ P
de X\ P

H° (X\P,Z)— H%(4\P,Z) » H. (U,Z) > H, (X\ P, Z)

[3, Théoréme 4.10.1, p. 190].

Ici, Z. désigne le faisceau constant et, pour un espace topologique Y,
H® (Y, Z) est formé des fonctions localement constantes sur ¥ a support
compact. Le support d’'un élément de H? (Y, Z) est un compact ouvert
dans Y. D’aprés le lemme, lorsque Y est localement compact, HY(Y,Z) = 0
si et seulement si Y n’a pas de composante connexe compacte. Ceci montre
d’abord que HY (X\ P, Z) = 0. Ensuite, que la condition 3) équivaut a
la nullité de HY (4 \ P, Z) ou encore, d’aprés I'exactitude de la suite précé-
dente, & Pinjectivité de H: (U, Z) - H: (X \ P, Z). Par dualité de Poincaré,

H! (U, Z) ¥~ H (U) et H: (X\P,Z) ~ H, (X\P),

ce qui achéve la preuve de 1’équivalence entre 3) et 4).

UTILISATION DE LA DUALITE DE SERRE

Désignons par £ I’ensemble des diviseurs effectifs sur X a support
contenu dans P. Pour D € 2, soient & (D) le produit tensoriel de & avec le

fibré en droites associé a D et E(D) = Hom (5 (D), zc), ou x est le fibré
cotangent de X. Les sections holomorphes de & (D) sont interprétés comme
sections méromorphes f de & telles que div f > — D et les sections holo-

morphes de E(D) comme sections holomorphes w de E = Hom (&, k)
telles que div w > D.

Considérons la suite exacte de cohomologie & supports compacts
associée au sous-espace fermé 4 de X

I, (X, & (D) - I (4, € (D)) » HL (U, &) - H. (X, £ (D))

[3, Théoréme 4.10.1, p. 190], ol I', désigne les sections & support compact
du faisceau des sections holomorphes d’un fibré en droites.
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Lorsque la surface X est ouverte (resp. compacte), I, (X, E (D)) =0
pour tout D (resp. pour D assez grand). D’autre part, par dualité de Serre
[5, Théoréme 3, p. 21 et Théoréme 4, p. 22],

H(U,&) = T (U, &) et HE (X, (D)) = I' (X, & (D)),

ou I' (, )" désigne le dual pour la topologie de la convergence compacte de
I’espace des sections holomorphes d’un fibré en droites. On arrive donc a
la suite exacte

0 I, (4, (D)) - I (U, & - T (X, & (D))

pour D assez grand.
Si M (D) dénote 'image de I' (X, £ (D)) par restriction dans I" (U, & (D))
et M (D)" l’espace des formes linéaires continues sur I (U, & (D))

sannulant sur M (D), on peut encore écrire I, (4, E (D)) = M (D)*
pour D assez grand.
Les propriétés fonctorielles de I’homomorphisme de jonction

I, (4, £ (D)) - H, (U, Z) et de lisomorphisme de Serre H. (X, ¢ (D))
~ I' (X, £ (D))" montrent que le diagramme

I, (4, (D)) — M (D,)"*

L T

U
T, (4,& (D)) —— M (Dy)"
commute pour D, << D,. Prenant I'intersection (ou, si ’on veut, la limite

projective) des deux membres de I'isomorphie I', (4, 5 (D)) = M (D)*,
on arrive a

A T, (4,E(D) =~ n M(D)* = M*,

De% Deg

ou M = U M(D) est formé des restrictions a U des sections méro-
De%

morphes de £ au-dessus de X a podles dans P.
La condition 1) du théoréme est que M soit dense dans I' (U, &) ou
encore, d’aprés Hahn-Banach, que 1’orthogonal M* soit nul:

La condition 1) est équivalente a

1) A T, (4,E(D) =0.

De%




— 223 —

EQUIVALENCE DES CONDITIONS 2) ET 1°)

Le support de we n I (4,¢ (D)) est un compact de 4, ouvert
De2

dans 4 d’aprés le principe du prolongement analytique et disjoint de P
puisque @ a un zéro d’ordre arbitraire en chaque point de P. Ainsi, 2)
implique 1’). Conséquence:

Lorsque la surface X est ouverte, I' (X, &) # 0.

Pour le voir, on utilise 4) == 1) avec P = @, en prenant pour U un
ouvert de X isomorphe par exemple a un disque du plan complexe, de sorte
que I' (U, &) # 0.

Montrons maintenant par contraposition que 1’) implique 2). Soit K
un compact non vide de A ouvert dans 4 et disjoint de P et soit ¥ un voisi-
nage ouvert de K dans X. On peut supposer V distinct de X lorsque X est
compacte, car alors P est non vide, donc K # X. Soit V, une composante
connexe de V' qui rencontre K. Comme V, est une surface de Riemann

ouverte, il existe « non nul dans I" (V,, &). Prolongeant « a V et restreignant

la section ainsi obtenue & K, on arrive a un f non nul dans I" (K, &). On

construit alors un élément non nul y de N I, (4, ¢ (D)) en prenant
De2

y|K=Bety|4A\K = 0.

L’équivalence entre 5) et 3) se raméne a 1’équivalence entre 1) et 3) en
remplacant X par X\ P et P par @ (que X\ P ne soit pas nécessairement
connexe ne crée pas de difficulté).

Remarque. Les détails techniques de la preuve donnée ont peut-étre
masqueé le fait suivant: le seul théoréme d’analyse complexe utilisé a été la
dualité de Serre. Ceci apparait plus clairement si ’on se restreint au cas
P = ¢ (i.e. au théor¢me d’approximation de Behnke-Stein). De ce point
de vue, il serait souhaitable d’avoir un traitement direct de la dualité de
Serre en dimension 1 dans le cas ouvert, indépendant du fait qu’une surface
de Riemann ouverte est une variété de Stein.
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