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SUR LE THÉORÈME D'APPROXIMATION DE RUNGE

par Claude Auderset

Cette note a pour but d'unifier et de compléter les diverses versions

connues en dimension 1 du théorème d'approximation de Runge.

L'énoncé originel de Runge (1885) est le suivant: toute fonction
holomorphe f sur un ouvert U de la sphère de Riemann possède une approximation

(uniforme sur les compacts) par des fonctions rationnelles. Ceci reste

correct lorsqu'on impose certaines conditions aux pôles des approximations,

par exemple, quand U ne contient pas le point à l'infini, / possède une

approximation polynomiale (pas de pôle à l'infini). Le meilleur résultat

connu dans cette direction est dû à Walsh [6, Theorem 17, p. 26]: pour que

toute fonction holomorphe f sur U possède une approximation par des

fonctions rationnelles n \ayant de pôles que dans un ensemble donné P, il
faut et il suffit que chaque « trou » découpé par U dans la sphère contienne

un point de P. (Un trou est une composante connexe du complémentaire
de U et l'on suppose que P ne rencontre qu'un nombre fini de trous.)

La version la plus célèbre du théorème d'approximation en dimension 1

est celle de Behnke-Stein [1, Satz 6, p. 445]: pour que les fonctions
holomorphes sur un ouvert U d'une surface de Riemann ouverte X soient approximates

par des fonctions holomorphes sur X9 il faut et il suffit qu 'aucune

composante connexe du complémentaire de U ne soit compacte (cf. aussi

[4, p. 239-241], où d'autres références sont données). Ces mêmes auteurs ont
encore démontré [1, Satz 13, p. 456]: chaque fonction holomorphe sur un
ouvert U de la surface de Riemann ouverte X possède une approximation
par des fonctions méromorphes sur X n 'ayant de pôles que sur la frontière
de U. A noter que les versions modernes négligent le cas compact, bien
qu'à l'origine le théorème de Runge ait été donné pour la sphère.

Le théorème général suivant est valable pour une surface de Riemann
quelconque X. Même lorsque X est la sphère ou lorsque X est ouverte (seuls
cas considérés jusqu'ici), il est plus précis que les résultats qui viennent
d'être rappelés.

Théorème. Soient X une surface de Riemann, £ un fibré en droites
holomorphe sur X, U un ouvert de X, de complémentaire A, et P une
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partie de A. Lorsque X est compacte, on suppose P non vide. Les conditions
suivantes sont équivalentes :

1) Toute section holomorphe de £ au-dessus de U peut être approchée,

uniformément sur les compacts de U, par des sections méromorphes de

Ç au-dessus de X à pôles contenus dans P seulement.

2) Tout compact non vide de A ouvert dans A contient un point de P.

3) Le complémentaire A\P de l'adhérence de P dans A n'a pas de

composante connexe compacte.

4) L'inclusion de U dans X\P induit un monomorphisme H1 (U)
— H1 (X\P), où H1 désigne l'homologie singulière entière (par exem-

pie).

5) Toute section holomorphe de Ç au-dessus de U peut être approchée,

uniformément sur les compacts de U, par des sections holomorphes de

£ au-dessus de X\P.

Remarque. Lorsque les composantes connexes de A sont ouvertes dans

A, par exemple lorsqu'elles sont en nombre fini, la condition 2) peut être

remplacée par:

toute composante connexe compacte de A contient un point de P.

En effet, les compacts de A ouverts dans A sont alors les réunions finies de

composantes connexes compactes de A.

Equivalence des conditions topologiques 2), 3) et 4)

Lemme. Pour qu 'un espace localement compact Y n 'ait pas de composante

connexe compacte, ilfaut et il suffit que Y ne contienne pas de compact
ouvert non vide.

C'est un conséquence des deux énoncés suivants :

— Une composante connexe d'un compact ouvert dans Y est une composante

connexe compacte de Y.

— Toute composante connexe compacte de Y est contenue dans un compact
ouvert [2, TGII, 32, Corollaire de la Proposition 6],

Comme tout compact ouvert dans A qui coupe P coupe déjà P, on peut

remplacer P par P dans la condition 2), qui se reformule donc: il n'y a pas
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de compact non vide ouvert dans A\P. D'après le lemme, ceci équivaut

à la condition 3).

Pour vérifier l'équivalence de 3) et 4), considérons la suite exacte de

cohomologie à supports compacts associée au sous-espace fermé A \ P

de X\P
H°c (X\F,Z) H°c (A\F,Z) -> Hl Z) -> H\ Z)

[3, Théorème 4.10.1, p. 190].

Ici, Z désigne le faisceau constant et, pour un espace topologique Y,

H°c (F, Z) est formé des fonctions localement constantes sur Y à support

compact. Le support d'un élément de H°C(Y,Z) est un compact ouvert

dans Y. D'après le lemme, lorsque Y est localement compact, Hc° (Y, Z) 0

si et seulement si Y n'a pas de composante connexe compacte. Ceci montre
d'abord que H°c (X\P, Z) 0. Ensuite, que la condition 3) équivaut à

la nullité de H°c (A \ P, Z) ou encore, d'après l'exactitude de la suite précédente,

à l'injectivité de H\ (U, Z) -» H\ (X\P, Z). Par dualité de Poincaré,

H\ (U, Z) « Hx (U) et Hl (X\ P, Z) ^ H, (X\P),

ce qui achève la preuve de l'équivalence entre 3) et 4).

Utilisation de la dualité de Serre

Désignons par Q) l'ensemble des diviseurs effectifs sur X à support
contenu dans P. Pour D e Q), soient £ (D) le produit tensoriel de £ avec le

fibré en droites associé à D et S, (D) Horn (£ (Z>), tc), où k est le fibré
cotangent de X. Les sections holomorphes de £ (D) sont interprétés comme
sections méromorphes / de £ telles que div/ > — D et les sections

holomorphes de £ (D) comme sections holomorphes co de £ Horn (£, k)
telles que div co > D.

Considérons la suite exacte de cohomologie à supports compacts
associée au sous-espace fermé A de X

rc (.X:, £ (D)) -* rc(A,£ (D)) -> Hl (U, b -> (X, Ç (D))

[3, Théorème 4.10.1, p. 190], où Fc désigne les sections à support compact
du faisceau des sections holomorphes d'un fibré en droites.
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Lorsque la surface X est ouverte (resp. compacte), rc (X, Ç (Z>)) 0

pour tout D (resp. pour D assez grand). D'autre part, par dualité de Serre

[5, Théorème 3, p. 21 et Théorème 4, p. 22],

H\ (U, (U, O' et H\ (D)) (D))',

où r )' désigne le dual pour la topologie de la convergence compacte de

l'espace des sections holomorphes d'un fibré en droites. On arrive donc à

la suite exacte

o -> rc (AA (D)) r (u; & - r (x, { (D))f

pour D assez grand.
Si M (D) dénote l'image de T (X, Ç (Z>)) par restriction dans r (U, Ç (D))

et M (D)1 l'espace des formes linéaires continues sur r (U, Ç (D))

s'annulant sur M (D), on peut encore écrire Tc (A, Ç (D)) M (D)1

pour D assez grand.
Les propriétés fonctorielles de l'homomorphisme de jonction

rc (A, £ (D)) H\ (£/, Ç) et de l'isomorphisme de Serre H\ (Z, £ (Z>))

r (X, £ (D)y montrent que le diagramme

rc(A,Ç(D1))^ M (D,)1

rc(A,t (D2)) M

commute pour Dx < D2. Prenant l'intersection (ou, si l'on veut, la limite

projective) des deux membres de l'isomorphie Tc (A, Ç (D)) M (D)1,

on arrive à

n rc(A,t(D)) s n M (D)1 M1,

où M — u M {D) est formé des restrictions à U des sections méro-
De@

morphes de £ au-dessus de X à pôles dans P.

La condition 1) du théorème est que M soit dense dans r (U, Ç) ou

encore, d'après Hahn-Banach, que l'orthogonal M1 soit nul:

La condition 1) est équivalente à

10 n rc(A,t;(D))0,
De®
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Equivalence des conditions 2) et 1')

Le support de coen rc (A,ç (Z))) est un compact de A, ouvert
DeS>

dans A d'après le principe du prolongement analytique et disjoint de P

puisque co a un zéro d'ordre arbitraire en chaque point de P. Ainsi, 2)

implique 1'). Conséquence:

Lorsque la surface X est ouverte, F (X, Ç) ^ 0

Pour le voir, on utilise 4) => 1) avec P 0, en prenant pour U un
ouvert de X isomorphe par exemple à un disque du plan complexe, de sorte

que r (U, 0 # 0.

Montrons maintenant par contraposition que 1') implique 2). Soit K
un compact non vide de A ouvert dans A et disjoint de P et soit V un voisinage

ouvert de K dans X. On peut supposer V distinct de X lorsque X est

compacte, car alors P est non vide, donc K =£ X. Soit V0 une composante
connexe de V qui rencontre K. Comme V0 est une surface de Riemann

ouverte, il existe a non nul dans r (V0, Ç). Prolongeant a à V et restreignant

la section ainsi obtenue à K, on arrive à un ß non nul dans F (.K, Ç). On
construit alors un élément non nul y de n (A, Ç (Z))) en prenant

DeSiï

y | K ßety | A\K0.

L'équivalence entre 5) et 3) se ramène à l'équivalence entre 1) et 3) en
remplaçant X par X\P et P par 0 (que I\Pne soit pas nécessairement
connexe ne crée pas de difficulté).

Remarque. Les détails techniques de la preuve donnée ont peut-être
masqué le fait suivant: le seul théorème d'analyse complexe utilisé a été la
dualité de Serre. Ceci apparaît plus clairement si l'on se restreint au cas
P 0 (i.e. au théorème d'approximation de Behnke-Stein). De ce point
de vue, il serait souhaitable d'avoir un traitement direct de la dualité de
Serre en dimension 1 dans le cas ouvert, indépendant du fait qu'une surface
de Riemann ouverte est une variété de Stein.
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