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3. DEMONSTRATION DU THEOREME 1.3

Dans toute la suite G est un ouvert connexe borné de C, G* son enve-
loppe de Carathéodory, U la composante connexe de G* contenant G,
Y une transformation conforme de U sur 4. On notera ¢ la transformation
réciproque de A sur U : @ = L.

3.1. Lemme. Soient { € U un point accessible, y, et y, deux chemins
dans U se terminant en {. Alors

im ¢ (@) = lim ()

¥132 2§ v232 ¢
Preuve. On sait que lim Y (z) existe (i=1, 2) (cf. [6], p. 315-323).
v132—¢

On peut supposer que y, et y, sont des arcs de Jordan qui ne se rencontrent
pas (sauf au point {); soit / un arc de Jordan dans U joignant les points
initiaux de y, et y,, et ne rencontrant pas y; et y,; la juxtaposition des
arcs y, y, et / détermine (avec le point {) une courbe fermée de Jordan;
soit 2 l'intérieur de cette courbe, alors Q = U: en effet si Q n’était pas
inclus dans U, il existerait des points de 0U dans Q, et donc des points
de H (composante connexe non bornée du complémentaire de G) dans Q
d’apres 2.4, et puisque 0Q N H = & on devrait avoir H = Q ce qui est
absurde. Le théoréme suivant de Lindelof permet de conclure.

THEOREME. Soit Q un ouvert simplement connexe dans la frontiére I’
est une courbe de Jordan. Soit  une fonction analytique dans Q et satis-
faisant les conditions suivantes :

(1) | v (2) I <1 dans Q.
(i) ¥ est continue sur I\ {{} oft { est un point de T.

(i) Si I'y et I', désignent les arcs frontiéres déterminés par { et un

second point (' de T, les limites a = lim ¢ (2),b = lim ¥ (2)
I'isz—{ I'9sz—{
existent.
Alors a =5 et lim Y (2) = a.
25z

Une démonstration de ce théoréme se trouve dans [6], p. 202.

Soient T ’ensemble des points de d4 ol ¢ a des limites radiales et Q*
la fonction « frontiére » ainsi définie sur T; 04\ T est de mesure nulle
et @* est injective sur T d’apreés le lemme 3.1.
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3.2. Démonstration du théoréme 1.3. Supposons que P (G) ne soit pas
fermé dans H* (G); alors d’apres 2.2 ¢ (G) = O n’est pas dominant dans
4; d’apres 2.3 il existe donc yedd et r > 0 tels que A (y,r) N O = @
et il est clair que @* (Tn4 (y, r)) est un sous-ensemble non dénombrable
de 0U formé de points accessibles & partir de G’.

Réciproquement soit A4 I’ensemble des points de U accessibles a partir
de G’ et supposons que A4 soit un ensemble infini non dénombrable. Soient
(G,) les composantes connexes de G’ et notons A4, ’ensemble des points de
oU accessibles & partir de G,. Il est clair que A = U 4, et il existe donc un

n

entier n, pour lequel 4,, est infini; soient {; et {, deux points distincts
de A4, et y un arc de Jordan dans G,',0 tel que y(0) = ety (1) = {53
I'image par ¥ de y est un arc de Jordan dans 4 joignant deux points distincts
de 04 (cf. [6], p. 322); puisque O = Y (G) est connexe, 4 n’est pas inclus
dans 00 et donc O n’est pas dominant dans 4, ainsi que G dans U : P (G)
n’est donc pas fermé dans H® (G) d’aprés 2.2.

Exemple. ([7], th. 4.1).

G est ouvert hachuré: les points du segment [0, a] sont accessibles & partir
de G’; P (G) n’est donc pas fermé dans H* (G).
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