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3. Démonstration du théorème 1.3

Dans toute la suite G est un ouvert connexe borné de C, G* son

enveloppe de Carathéodory, U la composante connexe de G* contenant G,

\j/ une transformation conforme de U sur A. On notera cp la transformation

réciproque de A sur U : cp ^_1.

3.1. Lemme. Soient ^edU un point accessible, y1 et y2 deux chemins

dans U se terminant en 0 Alors

lim if/ (z) lim \j/ (z)

71729Z_>C
Preuve. On sait que lim ^ (z) existe (z=l,2) (cf. [6], p. 315-323).

7192

On peut supposer que y± et y2 sont des arcs de Jordan qui ne se rencontrent
pas (sauf au point 0; soit / un arc de Jordan dans U joignant les points
initiaux de yx et y2, et ne rencontrant pas y1 et y2; la juxtaposition des

arcs 7i, y2 et / détermine (avec le point 0 une courbe fermée de Jordan;
soit Q l'intérieur de cette courbe, alors Q ci U: en effet si Q n'était pas
inclus dans U, il existerait des points de ô U dans Q, et donc des points
de H (composante connexe non bornée du complémentaire de G) dans Q

d'après 2.4, et puisque ôQ n H 0 on devrait avoir H c Q ce qui est
absurde. Le théorème suivant de Lindelof permet de conclure.

Théorème. Soit Q un ouvert simplement connexe dans la frontière r
est une courbe de Jordan. Soit \j/ une fonction analytique dans Ü et

satisfaisant les conditions suivantes :

(i) | \j/ (z) | <1 dans Q.

(ii) ij/ est continue sur r \ {0 où C est un point de T.

(iii) Si T1 et T2 désignent les arcs frontières déterminés par C et un
secondpoint C de T, les limites a lim \j/ (z), b lim \j/ (z)

existent.

Alors a b etlim i j/(z)a.
.'fer

Une démonstration de ce théorème se trouve dans [6], p. 202.
Soient T l'ensemble des points de où a des limites radiales et

la fonction « frontière » ainsi définie sur ôA\T est de mesure nulle
et cp* est injective sur T d'après le lemme 3.1.
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3.2. Démonstration du théorème 1.3. Supposons que P (G) ne soit pas
fermé dans H00 (G); alors d'après 2.2 \j/ (G) O n'est pas dominant dans

A ; d'après 2.3 il existe donc y e dA et r > 0 tels que A (y, r) n O 0
et il est clair que cp* (TnA (y, r)) est un sous-ensemble non dénombrable
de dU formé de points accessibles à partir de G'.

Réciproquement soit A l'ensemble des points de d U accessibles à partir
de G' et supposons que A soit un ensemble infini non dénombrable. Soient
(G'n) les composantes connexes de G' et notons An l'ensemble des points de

dU accessibles à partir de G'n. Il est clair que A u An et il existe donc un
n

entier n0 pour lequel Ano est infini; soient Ci et C2 deux points distincts
de AnQ et y un arc de Jordan dans G'nQ tel que y (0) Ci et y (1) C2;

l'image par \j/ de y est un arc de Jordan dans A joignant deux points distincts
de dA (cf. [6], p. 322); puisque O ij/ (G) est connexe, dA n'est pas inclus
dans dO et donc O n'est pas dominant dans A, ainsi que G dans U : P (G)
n'est donc pas fermé dans H00 (G) d'après 2.2.

Exemple. ([7], th. 4.1).

G est l'ouvert hachuré : les points du segment [0, a] sont accessibles à partir
de G' ; P (G) n'est donc pas fermé dans H00 (G).
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