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LIMITES DE SUITES BORNEES DE POLYNOMES

par Michel SAVOYANT

NOTATIONS

C désigne le plan complexe; si F < C, OF est la frontiere de F, F l’adhé-
rence de F.

A (z,, 1) est le disque ouvert de centre z, et de rayon r > 0. On notera

A4 = 4(0,1).

Si f est une fonction complexe bornée définie sur F on note || f||r

= s |G|

zeF

Soit G un ouvert borné de C.

H®* (G) est I’algébre de Banach des fonctions analytiques bornées sur G
avec la norme || 1'|| .

A (G) est I’algébre uniforme des fonctions continues sur G et analytique
dans G.

1. INTRODUCTION

Soit G un ouvert borné de C et B un sous-ensemble de H” (G): on
note B (G) ’ensemble des fonctions de H® (G) qui sont limites ponctuelles
sur G d’une suite bornée d’éléments de B; nous nous intéressons au probleme
suivant: quand B (G) est-il fermé dans H*® (G)? Lorsque B = A (G) ou
(avec une hypothése supplémentaire sur 0G) lorsque B est I’ensemble des
fractions rationnelles avec pdles hors de G, A. M. Davie ([3]) a montré
que B (G) est fermé dans H® (G); nous étudions ici le cas ou B = P,
'algébre des polynomes. Rubel et Shields ([7] th 4.1) ont montré qu’en
général P (G) n’est pas fermé dans H® (G); dans ce travail nous donnons
une condition géométrique nécessaire et suffisante pour que P (G) le soit

lorsque G est connexe. Avant d’énoncer le résultat principal nous donnons
deux définitions.
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1.1. Définition. Soit Q un ouvert borné de C. L’enveloppe de Carathéo-
dory de Q est lintérieur du complémentaire de la composante connexe
non bornée du complémentaire de Q. On note Q* cet ouvert.

1.2. Définition. Soit Q un ouvert de C et S un sous-ensemble ouvert
de @2; un point { € 0Q est dit accessible (resp. accessible a partir de S) s’il
existe un chemin continu z = y (¢) (0<t<<1) tel que: 7 (¢) € Q (resp. € .5)
pour te [0, I[ ety (1) = L.

Nous démontrons le théoréme suivant:

1.3. THEOREME. Soient G un ouvert connexe borné de C, G* son
enveloppe de Carathéodory, U la composante connexe de G* contenant G,
et G' = U\G Alors P (G) est fermé dans H® (G) si et seulement si
[’ensemble des points de 0U accessibles a partir de G' est au plus dénombrable.

Nous aurons a utiliser le théoréme suivant qui caractérise les éléments
de P (G): (cf. [5], p. 151 ou [7] pour une démonstration).

1.4. THEOREME. Une fonction fe H” (G) est dans P (G) si et seulement
s 'il existe une fonction Fe H” (G*) tel que F = f sur G.

Nous donnerons aussi des conditions suffisantes, portant seulement sur
G*, pour que P (G) soit fermé dans H® (G).

2. ENSEMBLES DOMINANTS

2.1. D¢éfinition. Soit G un ouvert de C, et S un sous-ensemble de G.
On dit que S est dominant dans G si || f||s = || f||¢ pour toute f dans
H® (G).

La proposition suivante justifie I'introduction de cette définition.

2.2. PROPOSITION. Soient G un ouvert connexe borné de C, et U la
composante connexe de G* qui contient G. Alors P (G) est fermé dans
H® (G) si et seulement si G est dominant dans U.

Preuve. Si G est dominant dans U, ’application restriction de H* (U)
dans H* (G) est une isométrie, et donc I'ensemble { f¢ : fe H* (U)} est
fermé dans H® (G); cet ensemble coincide avec P (G) d’aprés le théoréme 1.4.

Réciproquement supposons P (G) fermé dans H*® (G); l'application
restriction précédente est un homomorphisme continu bijectif de I’algébre

i
t
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H® (U) sur lalgébre P (G) (la surjectivité résultant de 1.4); d’aprés le
théoréme du graphe fermé, I’application réciproque est continue; il existe
donc une constante ¢ > 0 telle que pour chaque f€ H* (U) avec||f ||y = 1
et pour chaque entier » > 1 on a

e <)o =I5l < 1

Donc || f||¢ = 1 et Papplication restriction est une isométrie, c’est-a-dire
que G est dominant dans U.

Soit A le disque unité ouvert. Un théoréme de Brown, Shields et Zeller
([1]) caractérise les sous-ensembles dominants de 4 : S = 4 est dominant
si et seulement si presque tout point de d4 (pour la mesure de Lebesgue
sur 04) est limite non-tangentielle d’une suite de S. La proposition suivante
montre que si S est connexe, on a une caractérisation purement topologique
des ensembles dominants dans 4.

2.3. PROPOSITION. Soit S un sous-ensemble connexe de A. Alors S est
dominant dans A si et seulement si 0S o 0A.

Preuve. Méme si S n’est pas connexe, il est clair que la condition est
. , 1 +e 9z

nécessaire; en effet si ¢ ¢S la fonction f:z— = est telle que
[Alls <11/ lls =1

Réciproquement supposons 0S5 > d4. Nous montrons d’abord que
presque tout point de 04 est limite non-tangentielle d’une suite de points
de S; en effet supposons que non; alors il existe £ = 04 de mesure non
nulle telle que pour chaque e € E il existe dans 4 un triangle 7, de sommet e,
que 'on peut prendre rectangle en e, isocéle, ayant le rayon passant par e
comme bissectrice, et qui ne contient aucun point de S; pour chaque

: : 1
entier n > 1 soit E, = {eeE; hauteur de T, > —} alors E= U E, et

n n>1
il existe d’aprés le théoréme de la convergence monotone n, tel que E,, a
: : 1
une mesure non nulle; soit e, et e, deux points de E, avec| e; — e, | < .
Ro

les triangles T, et T,, déterminent un « triangle » ayant un arc d’extrémités
e; et e, comme cOté; le complémentaire dans 4 de la frontidre de ce
« triangle » a deux composantes connexes, et S doit étre dans I"'une d’elles,
ce qui est impossible puisque dS > 04. Montrons maintenant que S est
dominant; soit fe H* (4) et notons L2 (04) I’ensemble des fonctions
mesurables essentiellement bornées pour la mesure de Lebesgue sur 94
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et || ||, la norme correspondante; f a une limite radiale lim f (re)

r—>1
= f* (") pour presque tout e” € 94 etf* e L® (0d) avec|| f* || = || /|43
de plus si la limite radiale de f existe en €, on a aussi lim £ (z,) = f* (')

n

pour toute suite (z,) de 4 tendant non tangentiellement vers e ([4] th. 1.3);
soit ¢ > 0, il existe E = 04 de mesure non nulle telle que |f* (*) |
= H f | I 4 — &sur E et puisque presque tout point de E est limite non tangen-
tielle d’une suite de S on a ||f||s > ||f]|ls — & la proposition 2.3 est
démontrée.

Avant de donner une premicre application de 2.3 nous donnons sans
démonstration une liste de propriétés satisfaites par 1’enveloppe de Cara-
théodory Q* d’un ouvert Q.

2.4. PROPOSITION. Soient Q un ouvert borné de C et Q* son enveloppe
de Carathéodory. Notons H la composante connexe non bornée du complé-
mentaire de Q.

(i) 0Q* = 0H = 0H < 9Q
(i) H est le complémentaire de Q*

(iii)) Chaque composante conmnexe de Q* est simplement connexe. (i.e.
C\ Q* est connexe).

(iv) Side plus Q est connexe, 0Q* = 0U ou U est la composante connexe
de Q% qui contient .

Une démonstration de (1), (ii) et (iii) se trouve dans [7], 1a propriété (iv)
est immédiate a démontrer.

2.5. THEOREME. Soit G un ouvert connexe borné, et supposons que
0G* soit une courbe de Jordan. Alors P (G) est fermé dans H* (G).

Preuve. Remarquons que dans les hypothéses du théoréme G* est
connexe (i.e. G* = U avec les notations précédentes). D’apres la propo-
sition 2.2 il suffit de montrer que G est dominant dans G*. Soit Y une
transformation conforme de G* sur 4 (G* est simplement connexe d’apres
2.4 (iii)): 0G* étant une courbe de Jordan, Y se prolonge en un homéo-
morphisme de G* sur A, qui applique 0G* sur 04; Q =  (G) est un ouvert
connexe de 4 et 02 o 04 puisque 0G o> dG*; donc Q est dominant dans
A d’apres 2.3; il est clair alors que G est dominant dans G*.
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3. DEMONSTRATION DU THEOREME 1.3

Dans toute la suite G est un ouvert connexe borné de C, G* son enve-
loppe de Carathéodory, U la composante connexe de G* contenant G,
Y une transformation conforme de U sur 4. On notera ¢ la transformation
réciproque de A sur U : @ = L.

3.1. Lemme. Soient { € U un point accessible, y, et y, deux chemins
dans U se terminant en {. Alors

im ¢ (@) = lim ()

¥132 2§ v232 ¢
Preuve. On sait que lim Y (z) existe (i=1, 2) (cf. [6], p. 315-323).
v132—¢

On peut supposer que y, et y, sont des arcs de Jordan qui ne se rencontrent
pas (sauf au point {); soit / un arc de Jordan dans U joignant les points
initiaux de y, et y,, et ne rencontrant pas y; et y,; la juxtaposition des
arcs y, y, et / détermine (avec le point {) une courbe fermée de Jordan;
soit 2 l'intérieur de cette courbe, alors Q = U: en effet si Q n’était pas
inclus dans U, il existerait des points de 0U dans Q, et donc des points
de H (composante connexe non bornée du complémentaire de G) dans Q
d’apres 2.4, et puisque 0Q N H = & on devrait avoir H = Q ce qui est
absurde. Le théoréme suivant de Lindelof permet de conclure.

THEOREME. Soit Q un ouvert simplement connexe dans la frontiére I’
est une courbe de Jordan. Soit  une fonction analytique dans Q et satis-
faisant les conditions suivantes :

(1) | v (2) I <1 dans Q.
(i) ¥ est continue sur I\ {{} oft { est un point de T.

(i) Si I'y et I', désignent les arcs frontiéres déterminés par { et un

second point (' de T, les limites a = lim ¢ (2),b = lim ¥ (2)
I'isz—{ I'9sz—{
existent.
Alors a =5 et lim Y (2) = a.
25z

Une démonstration de ce théoréme se trouve dans [6], p. 202.

Soient T ’ensemble des points de d4 ol ¢ a des limites radiales et Q*
la fonction « frontiére » ainsi définie sur T; 04\ T est de mesure nulle
et @* est injective sur T d’apreés le lemme 3.1.
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3.2. Démonstration du théoréme 1.3. Supposons que P (G) ne soit pas
fermé dans H* (G); alors d’apres 2.2 ¢ (G) = O n’est pas dominant dans
4; d’apres 2.3 il existe donc yedd et r > 0 tels que A (y,r) N O = @
et il est clair que @* (Tn4 (y, r)) est un sous-ensemble non dénombrable
de 0U formé de points accessibles & partir de G’.

Réciproquement soit A4 I’ensemble des points de U accessibles a partir
de G’ et supposons que A4 soit un ensemble infini non dénombrable. Soient
(G,) les composantes connexes de G’ et notons A4, ’ensemble des points de
oU accessibles & partir de G,. Il est clair que A = U 4, et il existe donc un

n

entier n, pour lequel 4,, est infini; soient {; et {, deux points distincts
de A4, et y un arc de Jordan dans G,',0 tel que y(0) = ety (1) = {53
I'image par ¥ de y est un arc de Jordan dans 4 joignant deux points distincts
de 04 (cf. [6], p. 322); puisque O = Y (G) est connexe, 4 n’est pas inclus
dans 00 et donc O n’est pas dominant dans 4, ainsi que G dans U : P (G)
n’est donc pas fermé dans H® (G) d’aprés 2.2.

Exemple. ([7], th. 4.1).

G est ouvert hachuré: les points du segment [0, a] sont accessibles & partir
de G’; P (G) n’est donc pas fermé dans H* (G).
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4. UNE GENERALISATION DU THEOREME 2.5

Soit ¢ € 0U: on dit que { est un point simple si pour toute suite (z,)
dans U tendant vers {, il existe un chemin dans U passant par les points z,
et se terminant en {, sinon on dira que { est un point non simple. Un sous-
ensemble de dU est de mesure nulle s’il est de mesure nulle pour la mesure
harmonique sur 0U d’un point de U.

4.1. THEOREME. Soit G un ouvert connexe borné de C. Supposons que
[’ensemble des points non simples de U est de mesure nulle. Alors P (G)
est fermé dans H® (G).

C’est bien une généralisation de 2.5, puisque si tous les points de
oU (=0G*) sont simples, 0U est une courbe de Jordan. ([8], 14.20.a)).

Preuve. Si le résultat est faux, alors comme dans la démonstration du
théoréme 1.3, il existe yedd et r> 0 tel que 4(y,r) n O = & (ou
O =y (G)). Soit Ty = A(y,r)nT; on sait que E = ¢* (T;) est de
mesure non nulle (cf. par exemple [2], p. 350). Soit e = ¢@* (¢) avec te T,
et supposons que e soit un point simple; puisque 0G o> dG* = 0U il existe
une suite (z,) dans G tendant vers e; soit y un chemin dans U passant par
les points z, et se terminant en e; d’aprés le lemme 3.1. lim ¥ (2) = ¢,
ce qui est absurde. rezme

REFERENCES

[1] BrowN, L., A. SuieLps and K. ZELLER. On absolutely convergent exponential sums.
Trans. Amer. Math. Soc. 96 (1960), pp. 162-183.

[2] Davie, A. M. Dirichlet algebras of analytic functions. J. Functional Analysis 6
(1970), pp. 348-356.

[3] —— Bounded limits of analytic functions. Proc. Amer. Math. Soc. 32, n° 1 (1972),
pp. 127-133.

[4] Duren, P. L. Theory of H? spaces. Academic Press, 1970.

[51 GameLiN, T. W. Uniform algebras. Prentice-Hall, Englewood Cliffs, V.S., 1969.

[6] NEVANLINNA, R. and V. PAATERO. Introduction to complex analysis. Addison Wesley
Publishing Company, 1969.

[71 RuseL, L. and A. SHIELDS. Bounded approximation by polynomials. Acta Math. 112
(1964), pp. 145-162.

[8] RuDIN, W. Real and complex analysis. McGraw Hill, New York, 1966.

( Recu le 4 septembre 1979)
Michel Savoyant

UER de Mathématiques
place Eugéne-Bataillon
F-34060 Montpellier Cedex

L’Enseignement mathém., t. XXVI, fasc. 3-4. 15







	LIMITES DE SUITES BORNÉES DE POLYNÔMES
	Notations
	1. Introduction
	2. Ensembles dominants
	3. DÉMONSTRATION DU THÉORÈME 1.3
	4. Une généralisation du théorème 2.5
	...


