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LIMITES DE SUITES BORNÉES DE POLYNÔMES

par Michel Savoyant

Notations

C désigne le plan complexe; si F c C, dFest la frontière de F, F l'adhérence

de F.

A (z0, r) est le disque ouvert de centre z0 et de rayon r > 0. On notera

A A (0, 1).

Si/ est une fonction complexe bornée définie sur F on note ||/||f
sup \f(z)\.
zeF

Soit G un ouvert borné de C.

• H°° (G) est l'algèbre de Banach des fonctions analytiques bornées sur G

avec la norme 11 /11G.

A (G) est l'algèbre uniforme des fonctions continues sur G et analytique
dans G.

1. Introduction

Soit G un ouvert borné de C et B un sous-ensemble de i/00 (G): on
note B (G) l'ensemble des fonctions de H00 (G) qui sont limites ponctuelles
sur G d'une suite bornée d'éléments de B\ nous nous intéressons au problème
suivant: quand B (G) est-il fermé dans H00 (G)? Lorsque B A (G) ou
(avec une hypothèse supplémentaire sur ôG) lorsque B est l'ensemble des

fractions rationnelles avec pôles hors de G, A. M. Davie ([3]) a montré

que B (G) est fermé dans FF° (G); nous étudions ici le cas où B P,
l'algèbre des polynômes. Rubel et Shields ([7] th 4.1) ont montré qu'en
général P (G) n'est pas fermé dans #°° (G); dans ce travail nous donnons
une condition géométrique nécessaire et suffisante pour que P (G) le soit
lorsque G est connexe. Avant d'énoncer le résultat principal nous donnons
deux définitions.
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1.1. Définition. Soit Q un ouvert borné de C. L'enveloppe de Carathéo-
dory de Q est l'intérieur du complémentaire de la composante connexe
non bornée du complémentaire de Q. On note £2* cet ouvert.

1.2. Définition. Soit Q un ouvert de C et S un sous-ensemble ouvert
de Q; un point £ e dQ est dit accessible (resp. accessible à partir de S) s'il
existe un chemin continu z y (t) (0<7<1) tel que: y (t) e £2 (resp. e S)
pour t g [0, 1[ et y (1) £.

Nous démontrons le théorème suivant:

1.3. Théorème. Soient G un ouvert connexe borné de C, G* son

enveloppe de Carathéodory, U la composante connexe de G* contenant G,

et G' U\ G Alors P (G) est fermé dans H00 (G) si et seulement si
l 'ensemble des points de ÔU accessibles à partir de G ' est auplus dénombrable.

Nous aurons à utiliser le théorème suivant qui caractérise les éléments
de P (G): (cf. [5], p. 151 ou [7] pour une démonstration).

1.4. Théorème. Une fonction fe 77e0 (G) est dans P (G) si et seulement

s'il existe une fonction Fe H00 (G*) tel que F ~ f sur G.

Nous donnerons aussi des conditions suffisantes, portant seulement sur
G*, pour que P (G) soit fermé dans 77e0 (G).

2. Ensembles dominants

2.1. Définition. Soit G un ouvert de C, et S un sous-ensemble de G.

On dit que S est dominant dans G si \\f\\s Il / Il g Pour toute/ dans

77°°(G).
La proposition suivante justifie l'introduction de cette définition.

2.2. Proposition. Soient G un ouvert connexe borné de C, et U la

composante connexe de G* qui contient G. Alors P (G) est fermé dans
7700 (G) si et seulement si G est dominant dans U.

Preuve. Si G est dominant dans G, l'application restriction de 7700 (U)
dans 7700 (G) est une isométrie, et donc l'ensemble {f \G :/e T700 (U)} est

fermé dans TÉ00 (G) ; cet ensemble coïncide avec P (G) d'après le théorème 1.4.

Réciproquement supposons P (G) fermé dans H00 (G); l'application ;

restriction précédente est un homomorphisme continu bijectif de l'algèbre



— 213 —

H (U) sur l'algèbre P (G) (la surjectivité résultant de 1.4); d'après le

théorème du graphe fermé, l'application réciproque est continue; il existe

donc une constante c>0 telle que pour chaque/e H°° avec ||/ || 1

et pour chaque entier « > 1 on a

Donc II / Il g 1 et l'application restriction est une isométrie, c'est-à-dire

que G est dominant dans U.

Soit A le disque unité ouvert. Un théorème de Brown, Shields et Zeller

([1]) caractérise les sous-ensembles dominants de A : S a A est dominant
si et seulement si presque tout point de dA (pour la mesure de Lebesgue

sur dA) est limite non-tangentielle d'une suite de S. La proposition suivante

montre que si S est connexe, on a une caractérisation purement topologique
des ensembles dominants dans A.

2.3. Proposition. Soit S un sous-ensemble connexe de A. Alors S est

dominant dans A si et seulement si öS dA.

Preuve. Même si S n'est pas connexe, il est clair que la condition est
1 +e~l° z

nécessaire; en effet si e $dS la fonction est telle que

<l|/!|a l-
Réciproquement supposons ôS => ôA. Nous montrons d'abord que

presque tout point de ôA est limite non-tangentielle d'une suite de points
de S; en effet supposons que non; alors il existe E a dA de mesure non
nulle telle que pour chaque e e E il existe dans A un triangle Te de sommet e,

que l'on peut prendre rectangle en e, isocèle, ayant le rayon passant par e

comme bissectrice, et qui ne contient aucun point de S; pour chaque

entier n > 1 soit En \eeE\ hauteur de Te > -1 alors E U En et
l n)

il existe d'après le théorème de la convergence monotone n0 tel que E„0 a

une mesure non nulle; soit eL et e2 deux points de is avec | el - e2 | < —
1

2 n0
les triangles Tei et Te2 déterminent un « triangle » ayant un arc d'extrémités
el et e2 comme côté; le complémentaire dans A de la frontière de ce
« triangle » a deux composantes connexes, et S doit être dans l'une d'elles,
ce qui est impossible puisque ôS u ôA. Montrons maintenant que S est
dominant; soit fe ü00 (A) et notons L8 (SA) l'ensemble des fonctions
mesurables essentiellement bornées pour la mesure de Lebesgue sur dA
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et y y, la norme correspondante; / a une limite radiale lim f (re'e)
r-+1

/ * O10) pour presque tout eîd e dA etf* e L (dA) avec 11 / * 11
«> ||/||j;

de plus si la limite radiale de / existe en elQ, on a aussi lim/ (zn) f* (el9)
n

pour toute suite (zn) de A tendant non tangentiellement vers el9 ([4] th. 1.3);
soit s > 0, il existe E c: dA de mesure non nulle telle que | / * (el6) |

> 11 /1 \a ~ s sur E et puisque presque tout point de E est limite non tangen-
tielle d'une suite de S on a \\f\\s > \\f\\â "" £; la proposition 2.3 est

démontrée.
Avant de donner une première application de 2.3 nous donnons sans

démonstration une liste de propriétés satisfaites par l'enveloppe de Cara-

théodory £2* d'un ouvert £2.

2.4. Proposition. Soient £2 un ouvert borné de C et Q* son enveloppe
de Carathéodory. Notons H la composante connexe non bornée du
complémentaire de Q.

(i) d£2* ÔH dH a dQ

(ii) H est le complémentaire de £2*

(iii) Chaque composante connexe de £2* est simplement connexe, (i.e.
C \ £2* est connexe).

(iv) Si de plus £2 est connexe, dQ* ~ ÔU où U est la composante connexe
de £2* qui contient £2.

Une démonstration de (i), (ii) et (iii) se trouve dans [7], la propriété (iv)
est immédiate à démontrer.

2.5. Théorème. Soit G un ouvert connexe borné, et supposons que
ÔG* soit une courbe de Jordan. Alors P (G) est fermé dans H00 (G).

Preuve. Remarquons que dans les hypothèses du théorème G* est

connexe (i.e. G* U avec les notations précédentes). D'après la proposition

2.2 il suffit de montrer que G est dominant dans G*. Soit i]/ une
transformation conforme de G* sur A (G* est simplement connexe d'après
2.4 (iii)) : dG* étant une courbe de Jordan, \j/ se prolonge en un homéo-

morphisme de G* sur A, qui applique dG* sur ôA ; £2 \j/ (G) est un ouvert
connexe de A et dQ id dA puisque dG 3 dG*; donc £2 est dominant dans

A d'après 2.3; il est clair alors que G est dominant dans G*.



— 215 —

3. Démonstration du théorème 1.3

Dans toute la suite G est un ouvert connexe borné de C, G* son

enveloppe de Carathéodory, U la composante connexe de G* contenant G,

\j/ une transformation conforme de U sur A. On notera cp la transformation

réciproque de A sur U : cp ^_1.

3.1. Lemme. Soient ^edU un point accessible, y1 et y2 deux chemins

dans U se terminant en 0 Alors

lim if/ (z) lim \j/ (z)

71729Z_>C
Preuve. On sait que lim ^ (z) existe (z=l,2) (cf. [6], p. 315-323).

7192

On peut supposer que y± et y2 sont des arcs de Jordan qui ne se rencontrent
pas (sauf au point 0; soit / un arc de Jordan dans U joignant les points
initiaux de yx et y2, et ne rencontrant pas y1 et y2; la juxtaposition des

arcs 7i, y2 et / détermine (avec le point 0 une courbe fermée de Jordan;
soit Q l'intérieur de cette courbe, alors Q ci U: en effet si Q n'était pas
inclus dans U, il existerait des points de ô U dans Q, et donc des points
de H (composante connexe non bornée du complémentaire de G) dans Q

d'après 2.4, et puisque ôQ n H 0 on devrait avoir H c Q ce qui est
absurde. Le théorème suivant de Lindelof permet de conclure.

Théorème. Soit Q un ouvert simplement connexe dans la frontière r
est une courbe de Jordan. Soit \j/ une fonction analytique dans Ü et

satisfaisant les conditions suivantes :

(i) | \j/ (z) | <1 dans Q.

(ii) ij/ est continue sur r \ {0 où C est un point de T.

(iii) Si T1 et T2 désignent les arcs frontières déterminés par C et un
secondpoint C de T, les limites a lim \j/ (z), b lim \j/ (z)

existent.

Alors a b etlim i j/(z)a.
.'fer

Une démonstration de ce théorème se trouve dans [6], p. 202.
Soient T l'ensemble des points de où a des limites radiales et

la fonction « frontière » ainsi définie sur ôA\T est de mesure nulle
et cp* est injective sur T d'après le lemme 3.1.
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3.2. Démonstration du théorème 1.3. Supposons que P (G) ne soit pas
fermé dans H00 (G); alors d'après 2.2 \j/ (G) O n'est pas dominant dans

A ; d'après 2.3 il existe donc y e dA et r > 0 tels que A (y, r) n O 0
et il est clair que cp* (TnA (y, r)) est un sous-ensemble non dénombrable
de dU formé de points accessibles à partir de G'.

Réciproquement soit A l'ensemble des points de d U accessibles à partir
de G' et supposons que A soit un ensemble infini non dénombrable. Soient
(G'n) les composantes connexes de G' et notons An l'ensemble des points de

dU accessibles à partir de G'n. Il est clair que A u An et il existe donc un
n

entier n0 pour lequel Ano est infini; soient Ci et C2 deux points distincts
de AnQ et y un arc de Jordan dans G'nQ tel que y (0) Ci et y (1) C2;

l'image par \j/ de y est un arc de Jordan dans A joignant deux points distincts
de dA (cf. [6], p. 322); puisque O ij/ (G) est connexe, dA n'est pas inclus
dans dO et donc O n'est pas dominant dans A, ainsi que G dans U : P (G)
n'est donc pas fermé dans H00 (G) d'après 2.2.

Exemple. ([7], th. 4.1).

G est l'ouvert hachuré : les points du segment [0, a] sont accessibles à partir
de G' ; P (G) n'est donc pas fermé dans H00 (G).
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4. Une généralisation du théorème 2.5

Soit £e SU: on dit que £ est un point simple si pour toute suite (z„)

dans U tendant vers £, il existe un chemin dans U passant par les points zn

et se terminant en £, sinon on dira que £ est un point non simple. Un sous-

ensemble de dU est de mesure nulle s'il est de mesure nulle pour la mesure

harmonique sur dU d'un point de U.

4.1. Théorème. Soit G un ouvert connexe borné de C. Supposons que
Vensemble des points non simples de dU est de mesure nulle. Alors P (G)

est fermé dans Hœ (G).

C'est bien une généralisation de 2.5, puisque si tous les points de

dU( 3G*) sont simples, dU est une courbe de Jordan. ([8], 14.20.«)).

Preuve. Si le résultat est faux, alors comme dans la démonstration du
théorème 1.3, il existe y e dA et r > 0 tel que A (y, r) n O 0 (où
O \jj (G)). Soit T1 A (y, r) n T; on sait que E cp* (Tf) est de

mesure non nulle (cf. par exemple [2], p. 350). Soit e cp* (t) avec t e T1

et supposons que e soit un point simple; puisque dG zd dG* — dU il existe

une suite (zn) dans G tendant vers e; soit y un chemin dans U passant par
les points et se terminant en e; d'après le lemme 3.1. lim \J/ (z) t,
ce qui est absurde. y3Z~*e
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