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Au lieu d’utiliser le polynome minimal de f on peut utiliser n’importe
quel polyndme Fe Z [X], pourvu que F (o) # 0. On aura une bonne
minoration de la norme de F (¢f) si f (ou mieux, une puissance de f) divise F.

LEMME 2. Soient o un entier algébrigue non nul et non racine de l’unité,
£ son polynéme minimal, H sa hauteur, T un entier, p un nombre premier,
et Fe Z[X] un polynéme de degré < L tel que T divise F et F (%) # O.
Alors

M(x)* (LH)Y > p'" .
En effet, on a
| N (F (¢7)) < (L H)* M (2)**

et p?T divise la norme de F ().

Il reste & trouver un polyndme F vérifiant les hypothéses du lemme 2.
On peut bien siir choisir F = £ T, mais on ne trouve alors rien de mieux que
le lemme 1. Le miracle vient de la méthode de Thue: en utilisant le lemme
de Siegel, on peut construire un polyndme F tel que /' T divise F, et tel que
la hauteur de F ne soit pas trop grande:

H(F) <2 + (2T LT M (@)TH)" /4D

pourvu que L >2dT. Ainsi le degré de F risque d’étre plus grand que
celui de /7, mais on gagne une bonne majoration de la hauteur de F. On
choisit T = [50 (log d) (log log d)'l] , et L = dT*. On montre qu’il existe
un nombre premier p dans lintervalle [T2, 6 T? log T7] tel que F («®) # O.
On en déduit log M (¢) > (8 T>)~* pour d > 16, ce qui démontre le théo-
réme.

Dans un travail récent [D], E. Dobrowolski a obtenu des minorations
de M (P) pour Pe Z [X], P (0) # O et P non produit de polyndmes cyclo-
tomiques, en fonction seulement du nombre de coefficients non nuls de P.

ANALOGUE ELLIPTIQUE

Soit E une courbe elliptique définie sur le corps Q des nombres algé-

briques. Soit 4 1a hauteur de Néron Tate sur E (Q). M. Anderson a démontré
dans le cas C.M. que pour tout P € E (Q) non de torsion,

h(P) > ¢, D~*(logD)™3,
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ou ¢, est une constante positive ne dépendant que de g,, g;. Cet énoncé a
€té récemment amélioré par D. W. Masser (résultat annoncé en Mai 1979
aux journées sur les fonctions abéliennes et les nombres transcendants):

THEOREME (D. W. Masser). Soit E une courbe elliptique définie sur Q
Il existe c, > 0 tel que si P e E(Q) n’est pas de torsion, alors

h(P) >c, D™'° (log D)"%.
De plus si E a une multiplication complexe

h(P) > ¢, D3 (log D)~ 2.

REMARQUE FINALE

Soit « un nombre algébrique de polynéme minimal

d
a X'+ ... =a; =a, [] (X—0o).
j=1
On définit

M () = |ay| ]:I max (1, |« ).

Le résultat suivant, implicite chez Feldman, a été explicité par D. Bertrand:

M(x) = [] max(1,]|a],)

ou v décrit I’ensemble des valeurs absolues convenablement normalisées
de Q (). La hauteur logarithmique absolue de « introduite par A. Weil
peut alors étre définie par

1
h = loe M .
@ =m0 M

Dans les démonstrations de transcendance on a le choix entre plusieurs
définitions de la « taille ». Il est maintenant généralement admis (depuis
peu) que le meilleur choix est /4 ().
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