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Cette question a été posée par Lehmer en liaison avec la recherche de

grands nombres premiers (cf. [S]). Elle apparaît aussi en théorie ergodique
(voir également [S]). Enfin elle est apparentée à la conjecture de Pisot: si

0 > 1 est un nombre réel tel qu'il existe X > 0 pour lequel 11 X 6n 11 -»0
(où y Il désigne la distance à l'entier le plus proche), alors 9 est un nombre
de Pisot. Le lien avec le problème de Lehmer se fait par l'intermédiaire de

l'ensemble E des limites lim an+1/an, pour (a0, al9 suite de Pisot:

où N (x)

^n+i N (an/@n—î) n ^ 1

r
X+2 et ö0, a1 sont des entiers, 0 < a0 < a±. On sait que

E est dense dans [1, oo], et que E contient l'ensemble S des nombres de

Pisot et celui T des nombres de Salem. Si on avait E S u T, on en
déduirait d'une part inf T 1, ce qui répond à la question de Lehmer, et

on en déduirait d'autre part la conjecture de Pisot. Cependant D. Boyd
[B2], [B3] a obtenu des résultats qui suggèrent plutôt E ^ S u T.

Il est intéressant de noter qu'en 1936, après avoir donné à Paris un
exposé sur la solution par Schneider du 7e problème de Hilbert sur la
transcendance de ab, C. L. Siegel signala à C. Pisot la question de

D. H. Lehmer. Quarante ans après (comme nous allons le voir), la méthode
de Schneider permet à Stewart et Dobrowolski de faire des progrès importants

vers une réponse négative à la question de Lehmer.

Polynômes non réciproques

En 1970, C. J. Smyth a montré que si le polynôme minimal de a n'est

pas réciproque (et a # 0, a ^ 1), alors M (a) > 0o où 60 est la racine
réelle de X3 - X - 1. Il en déduit le résultat de Siegel (1944): 90

1, 32471795 est le plus petit nombre de Pisot (l'existence du plus

petit nombre de Pisot résulte du fait, démontré par Salem en 1944, que
l'ensemble S est fermé). Il en déduit aussi un résultat de Chamfy (1957):
si a est un entier algébrique non réel vérifiant | a | | a | > 1 et | ay | < 1

pour aj conjugué de a avec ccj ^ a et ocj ^ a, alors | a | > <sJq0. Enfin
si a ^ 0, a ^ 1 a un polynôme minimal non réciproque, on a

| — 1
0o

max a- > 1 H
A
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La question de Lehmer est donc résolue pour les polynômes non

réciproques. Néanmoins l'étude de l'ensemble des valeurs de M (a) pour a non

réciproque n'est pas terminée. Le plus petit point limite connu [Bl, B2,

B4] correspond aux polynômes X"+ +1 :

ß exp

exp

1 * î

log
0 0

1 p 71/ 3

n 0

log | e2""i + e2in'î + 1 | dt2

t
log I 2 sin dt

1,38135

On ignore si ce nombre est algébrique ou transcendant (cf. [B2]).

Remarque. Pour PeC [zu...,z„], Mahler définit

1 pl
M (P) exp log I P (<e2inti e2intn \ dt1 dtn

La formule de Jensen montre que M (oc) M (P) si P e Z [X] est le

polynôme minimal de a. D'autre part soit P (X, F) e C [X, Y], et, pour k > 0,

soit Qk (X) P (X, Xk) e C [X]. Alors on a (cf. [Bl] théorème 2) M (Qk)

-» M (P) quand k -» oo.

Polynômes réciproques

D. W. Boyd a fait très récemment une recherche sur ordinateur qui lui
a permis de vérifier que M (a) > a0 si a est un nombre algébrique (non nul
et non racine de l'unité) de degré <16, ou bien de degré < 26 et de hauteur

< 1 (i.e. dont le polynôme minimal a pour coefficients 0, 1 ou — 1).

D'autre part le plus petit point limite de l'ensemble des M (a) qu'il connaisse
est

M(Y2(X+1) + Y(X2+X+1) + X2 + 1)

exp | C2 (1 "h z 1) H" C (z + 1 + z 1) + z + 1 | d6 dt
oo J

1,255425

(où on a écrit C ~ e2ln9, z - e2lnt), correspondant par exemple aux
polynômes

x^ii+x-1) +r(i + i+r1) + î.
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