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Cette question a été¢ posée par Lehmer en liaison avec la recherche de
grands nombres premiers (cf. [S]). Elle apparait aussi en théorie ergodique
(voir également [S]). Enfin elle est apparentée a la conjecture de Pisot: si
0 > 1 est un nombre réel tel qu’il existe A > 0 pour lequel || 46" || — 0
(ou || . || désigne la distance a I’entier le plus proche), alors 0 est un nombre
de Pisot. Le lien avec le probléme de Lehmer se fait par I'intermédiaire de
Iensemble £ des limites lim a, . ,/a,, pour (a,, a4, ...) suite de Pisot:

A1 = N(al%/an—l)a n > 17

1
ou N (x) = l:x + 5:]’ et a,, a; sont des entiers, 0 < a, < a;. On sait que

E est dense dans [1, oo], et que E contient I’ensemble S des nombres de
Pisot et celui 7" des nombres de Salem. Si on avait £ = Su 7T, on en
déduirait d’une part inf 7 = 1, ce qui répond a la question de Lehmer, et
on en déduirait d’autre part la conjecture de Pisot. Cependant D. Boyd
[B2], [B3] a obtenu des résultats qui suggerent plutét £ # S u T.

Il est intéressant de noter qu’en 1936, aprés avoir donné a Paris un
exposé sur la solution par Schneider du 7¢ probléme de Hilbert sur la
transcendance de a4, C. L. Siegel signala a C. Pisot la question de
D. H. Lehmer. Quarante ans aprés (comme nous allons le voir), la méthode
de Schneider permet a Stewart et Dobrowolski de faire des progrés impor-
tants vers une réponse négative a la question de Lehmer.

POLYNOMES NON RECIPROQUES

En 1970, C. J. Smyth a montré que si le polyndme minimal de « n’est
pas réciproque (et « # 0, « # 1), alors M (o) >0, ou 0, est la racine
réelle de X° — X — 1. 1l en déduit le résultat de Siegel (1944): 0,
= 1, 32471795 ... est le plus petit nombre de Pisot (I’existence du plus
petit nombre de Pisot résulte du fait, démontré par Salem en 1944, que
Pensemble S est fermé). Il en déduit aussi un résultat de Chamfy (1957):
si o est un entier algébrique non réel vérifiant [o| = || > 1et |o;| < 1
pour «; conjugué de o avec o; # o et a; # «, alors || > ./g,. Enfin
sia # 0, « # 1 a un polyndme minimal non réciproque, on a

log 6,

max |o; | > 1 ;
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La question de Lehmer est donc résolue pour Jes polyndmes non réci-
proques. Néanmoins 1’étude de I’ensemble des valeurs de M («) pour & non
réciproque n’est pas terminée. Le plus petit point limite connu [B1, B2,
B4] correspond aux polynémes X" + X + 1:

1 1
B = expj log|e?™ + ™2 + 1| dt dt,

0 JO

1 rm/3 t
= exp{;t- — log (2 sini) dt}
J 0

= 1,38135 ...

On ignore si ce nombre est algébrique ou transcendant (cf. [B2]).

Remarque. Pour P C [z4, ..., z,], Mahler définit
1 1 .
M (P) = expj J log | P(e*™, ..., e*"n) | dty ... dt, .
0 0

La formule de Jensen montre que M (x) = M (P) si P e Z [X] est le poly-
néme minimal de «. D’autre part soit P (X, ¥Y) e C [X, Y], et, pour k£ > 0,
soit O, (X) = P (X, X*)e C[X]. Alors on a (cf. [B1] théoréme 2) M (Q,)
— M (P) quand k — oo0.

POLYNOMES RECIPROQUES

D. W. Boyd a fait trés récemment une recherche sur ordinateur qui lui
a permis de vérifier que M (&) > o si o est un nombre algébrique (non nul
et non racine de I'unité) de degré < 16, ou bien de degré <26 et de hau-
teur <1 (i.e. dont le polyndme minimal a pour coefficients 0, 1 ou —1).

D’autre part le plus petit point limite de '’ensemble des M (&) qu’il connaisse
est

M(Y*(X+1) + Y(X*+X+1) + X + 1)

1 p1
=expj J 10g]§2(1+z”1)+é'(z+1—l—z_1)—I—Z+1|d9dt

0 0

= 1,255425 ...

(oli on a écrit { = e*'™, z = *™), correspondant par exemple aux poly-
ndémes

XPA+X "D + X" X +14+4X"H + X + 1.
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