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SOUVENIRS MATHÉMATIQUES x)

par Charles Pisot

Arrivé au terme de cinquante années d'enseignement, j'ai vu certains

jeunes chercheurs, débutant avec enthousiasme, être ensuite déçus par
leurs efforts, soit qu'ils soient arrêtés par la difficulté de la question cherchée,

soit qu'ils s'aperçoivent qu'ils ont retrouvé des résultats connus. J'ai donc

pensé qu'en racontant mon propre cheminement, cela aidera peut-être
certains à ne pas se décourager.

Depuis mon enfance, j'avais un goût marqué pour les nombres entiers

dont je m'amusais à faire des listes diverses. Entre autres la question de

l'extraction de la racine carrée me paraissait bien compliquée et je me
demandais s'il n'y avait pas d'autre manière de procéder. En examinant
en particulier le cas de yj2, je me disais que je trouverais une bonne valeur
approchée en cherchant dans une table de carrés un carré dont le double
soit aussi voisin que possible d'un autre carré. Il s'agit donc de chercher
des entiers p et q tels que | p2 - 2q2 | soit aussi petit que possible. Comme
yj2 n'est pas rationnel, la plus petite valeur susceptible d'être ce minimum
est 1. Or un examen d'une table de carrés montre immédiatement que la
valeur 1 est effectivement possible et on trouve même beaucoup de couples

p et q de cette espèce, dont voici les premiers:

P 1 1 3 7 17 41 99

p 0 1 2 5 12 29 70
n 1 2 3 4 5 6 7

Ainsi 99/70 1,41428... est une excellente approximation de yj~i
1,41421... En examinant ces entiers et en donnant un numéro n à

chaque couple p, q, on s'aperçoit que l'on a:

Pn + 2 ^Pn+1 T pn P.n + 2 ^P.n+1 T qn •

b Cet article et les deux articles qui suivent (de M. Waldschmidt et de M. Mendes
France) sont les textes de conférences prononcées au Colloque organisé à Paris, le 19 juin
1979 en l'honneur du professeur Charles Pisot.
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Des essais numériques effectués avec ces formules donnent effectivement
des valeurs pn et qn avec | pl — 2q% | 1. Ce résultat que je ne parvenais

pas à établir m'a profondément intrigué. En essayant le même procédé
avec d'autres racines carrées, comme ^3 ou ^5, il semblait qu'il y eut des

propriétés analogues.
J'étais alors au Collège d'Obernai et je me suis adressé à mon professeur

de mathématiques M. Düringer. Il m'a dit que ce problème était sans doute
lié à la théorie des fractions continues et il m'a donné un ouvrage où je
pouvais étudier celle-ci. Cette théorie permet effectivement de résoudre

en nombres entiers x et y l'équation | x2 — dy2 | 1 dite de « Pell-Fermat »

lorsque d est un entier positif donné, non carré parfait. Je pense que cet

événement a déterminé ma recherche future et je rends un hommage ému

à ce Maître qui a su discerner immédiatement la théorie utile. Combien

en seraient capables aujourd'hui
A ma sortie de l'Ecole Normale, j'ai eu la chance d'y être nommé

agrégé-préparateur. J'étais alors fermement décidé à me consacrer à la
Théorie des nombres, malgré le fait que cette discipline n'avait à l'époque
aucun représentant à l'Université française, qui aurait pu être mon directeur
de recherche. J'ai alors vanté à mon meilleur ami de l'Ecole, Cl. Chabauty,
les beautés des fractions continues. Celui-ci a alors observé que par exemple
dans le cas décrit plus haut des valeurs approchées de 2, si l'on considérait

qn et pn comme les coordonnées d'un point An dans un plan affine, les

vecteurs 0An vérifiaient la relation

QAn+2 2 0An+1 + 0An

et les points An pouvaient s'obtenir par le procédé géométrique suivant:
Dans un plan (q,p), la droite d'équation p — q^J 2 0 partage les points
à coordonnées entières de l'angle q > 0, p > 0 en deux sous-ensembles;

les enveloppes convexes de ces sous-ensembles ont pour sommets
alternativement les points An. Une telle interprétation est valable pour toute
fraction continue. Ce succès a décidé mon ami à se consacrer à la Théorie
des nombres et nous nous sommes mis à généraliser le procédé.

Considérons le cas de trois dimensions. Soit un espace affine rapporté
à trois axes r, q, p. Limitons-nous pour simplifier à r > 0, q > 0, p > 0.

Soit D une demi-droite d'origine 0 située dans cet ensemble et définie

par le vecteur de composantes (1, ß, a) avec a > ß > 0, donc D a pour
équations p - ar 0, q - ßr 0. Soient les points A0 (1,0,0),
A± (0, 1, 0), A2 (0, 0, 1) et posons a0 a, ß0 ß. Supposons déjà
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construit les points An+2, An+1, An pour n > 0, nous considérons le plan

passant par An et parallèle aux vecteurs 0An+1 et 0An+2. Ce plan coupe la
demi-droite D en un point Dn; le vecteur 0Dn s'écrit donc

0Dn ocnOAn + 2 + ßn0An+l + 0An.

Désignons par [z] l'entier immédiatement inférieur à z, donc [z] < z < [z]+l
posons an [a„] et bn [ßn\; puis

®An+ 3 an0An+2 + bn0An+1 + 0An.

Le déterminant formé par les composantes de trois vecteurs consécutifs
0An + 3, 0An+2, 0An+1 est alors égal à celui correspondant aux vecteurs
0A„+2, 0An+U 0An donc à celui de 0A2, 0AU 0Ao; par suite il vaut 1; ainsi
0An+2, 0An+1, 0An est une base de l'espace pour chaque n. En écrivant que
0Dn+1 et 0Dn sont proportionnels, on a

QDn+l Pn+l^Dfi Pn+l(ÖCnQAn + 2 + ßn0An+1 +0An)
et

OAj+i ocn+1 (an0An+2 + bn0An+1 -f (Mn) + ßn + 10An+2 + CL4,J+1

puis en égalant les composantes sur la base 0An+2, 0An+1, 0An, on obtient:

anCCn+1 + ßn + 1 ~ Pn + l^ni ^/A+l + 1 pn+ißn', <Xn+i — Pn+l

d'où
(ßn+ l/^n+ l) •> (l/0Cn + ji) ßn j

comme an [an] et bn [ßn], on a

0 ^ ßn+ll^n+l ^ i d l/(Xn+1 < 1

et les deux suites an et bn s'obtiennent par

K Ißni, ccn+1 Wn-bn), an [>„],
ßn+l ^n+1 ^n)

l'algorithme peut donc se continuer aussi longtemps que ni aB, ni ßn ne
sont des entiers; si cela se produit a et ß sont « rationnellement dépendants »,
c'est-à-dire il existe des entiers u, v, w, avec u, v non nuls tous les deux tels
que uoc + vß + w 0.

Si on projette les points An parallèlement à la direction D sur le plan
0Al9 0A2, appelons dn la projection de An. On a



— 188 —

®dn+3 — an®dn + 2 + bnOdn+1 + 0dn ; 0 ccnOdn+2 + ßnOdn+1 + 0dn,

done

0^1+3 (K - (ßn^l^n) 1 + (1 — aJ ccn) 0dn Xn0dn+1 + Jißdn

avec

K bn- (ßnan)lan, pn 1 - ajan.

On a 0 < pn < 1 et

^71 + Un 1 ~ ((Ai + 1) a^)lan < ^ + bn — (bn + l) —-

(&B + l)/(a, + l)

done 2n + \xn < 1. De manière analogue

-K + Vn 1 + (Ä -l)(^/a«) - bn < 1 -bn + (anbn)lccn

< 1 -bn + bn 1

Ainsi I | + pn < 1 et | 0dn+3 | < sup (|0dn+1|, \0dn\), cette inégalité est

stricte si sup (|0J„+ 3|, \0dn\) n'est pas nul. Or 0dn (0, qn — ßrn9pn~arn)
si (rn, qn) pn) sont les composantes de 0An. Pour n 1, 2, 3, ces composantes
sont de longueur inférieure à 1, donc pour tout n > 1, on a les inégalités

\ln ~ ßrn| < 1» \Pn ~ «r„ \ < 1.

Cela permet de montrer que le cas an entier ou ßn entier pour un certain n

se produit lorsque a et ß sont rationnellement dépendants. S'il n'en est pas
ainsi, on a toujours ccn et ßn non entiers, donc l'algorithme peut se continuer
indéfiniment. Dans ce dernier cas on a alors a lim (pjrn), ß lim (qjrn)
lorsque n augmente indéfiniment. On obtient par conséquent des approximations

simultanées rationnelles (de même dénominateur) des deux nombres

a et ß.

Lorsque cet algorithme devient périodique, c'est-à-dire si l'on a, pour
un certain entier s > 1, les égalités an+s ccn, ßn+s ßn pour tout n > n0,

on montre que la quantité p an+1an+2 a„+s, qui est manifestement

indépendante de n, vérifie une équation p3 - pp2 - qp — 1 0, à coefficients

p et q entiers rationnels, ayant dans le plan complexe une racine réelle

p > 1 et les deux autres racines dans \z\ < 1 ; les nombres a et ß sont alors

deux irrationnelles rationnellement indépendantes du corps Q [p].

Nous étions arrivé à ces résultats au bout d'une année de travail, mais

alors j'ai découvert un article dans YEncyclopédie des Sciences Mathé-
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matiques qui montrait que la représentation géométrique des fractions

continues avait été exposée par F. Klein en 1896 [8] et que la généralisation

aux couples d'irrationnelles était due à C. G. Jacobi (1868) [7] et les

précisions sur l'approximation avaient été trouvées par O. Perron en 1908 [10].

Quoique déçus par ces constatations, il nous restait cependant le sentiment

d'avoir été capables de trouver des résultats intéressants dans un domaine

où nous n'avions pas été guidés. Entre-temps mon ami Chabauty m'a

quitté, car il avait obtenu une bourse pour les Etats-Unis. Moi-même je
cherchais à attaquer le problème, qui n'est d'ailleurs pas encore résolu

aujourd'hui, de la périodicité du développement d'un couple d'irrationnelles

cubiques d'un même corps du troisième degré. Signalons à ce sujet le résultat
obtenu par mon premier élève M. David [3] qui a montré que pour des

algorithmes très voisins de celui de Jacobi, la périodicité n'avait pas lieu

pour certains couples d'irrationnelles cubiques indépendantes. J'ai ainsi
été conduit à calculer de nombreux développements, ce qui conduisait,
dans le cas de la périodicité, à des équations du type p3 — pp2 — qp — 1

0 et à étudier les puissances successives pn de la racine p > 1. J'ai alors
été frappé par un résultat, d'ailleurs évident, à savoir que pn était de plus
en plus voisin d'un entier si n augmente indéfiniment. Cela provient du
fait que la somme un pn + p'n + p"n, où p' et p" sont les conjugués de p,
est un entier rationnel et que | p' | < 1, | p" | < 1. En ayant l'idée de

chercher une réciproque à cette propriété, je me suis rappelé la méthode de
la « fonction génératrice » de Lagrange. En considérant, pour une variable z

00

complexe, la série £ unzn, on a une série de Taylor à coefficients entiers.
o

Or les résultats de la thèse de G. Hadamard ont permis à E. Borel en 1894 [2]
de montrer que si une telle série représente une fonction méromorphe dans
un disque | z | < R où R > 1, alors elle était le développement d'une
fraction rationnelle. Or si on pose pn un + en, avec un entier rationnel et

GO 00

que pour un 9< 1 on ait | s„ | < 6", alors X iß" ~ X £„z" converge
0 o

oo

pour |z| < 1/6 et 1/6 > 1, tandis que pnzn 1/(1 — pz) est méromorphe
o

dans le plan complexe. Le théorème de Borel s'applique donc et

00

X unz" A 0Z)IQ (z)
0

est une fraction rationnelle, où Aet Qsontdes polynômes à coefficients
entiers. Fatou [6] a montré que A et Q peuvent être choisis premiers entre
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eux et Q (0) 1. Cela montre que p est un entier algébrique dont tous les

conjugués autres que p se trouvent dans le disque | z | < 0 < 1. Ce résultat,
sauf le fait que p est entier algébrique, avait été démontré avec la méthode
des tiroirs par A. Thue en 1912 [15], mais je l'ignorais heureusement à

l'époque.
Une amélioration du critère de Hadamard-Borel [11] permet d'aller

plus loin et de montrer que si p > 1 et X > 0 sont des réels tels que pour
00

tout « > 0 il existe un entier rationnel un de sorte que la série £ (Xpn-un)2
o

soit convergente, alors p est un entier algébrique dont tous les conjugués
autres que p sont dans le disque | z | < 1 du plan complexe; X est alors un
nombre algébrique de l'extension par p du corps des rationnels.

L'ensemble des entiers algébriques p ayant les propriétés précédentes

s'appelle S en l'honneur de R. Salem qui en a trouvé des propriétés
remarquables. En se servant de mes méthodes, R. Salem a, en particulier, démontré

que l'ensemble S est fermé pour la topologie des nombres réels [13]. Son

idée essentielle consiste à associer à chaque p de l'ensemble S la fraction
rationnelle P (z)/ Q (z), où P est le polynôme irréductible ayant p pour
zéro et Q le polynôme réciproque de P; alors | P (z)/Q (z) | 1 sur | z | 1.

00

Cela lui permet de borner la somme de la série £ (Xpn — un)2, où X est tel
o

que la fonction P(z)/Q(z) — 2/(1-pz) soit holomorphe dans | z | < 1 ;

on en déduit le théorème cité.

Ayant été nommé à Bordeaux, j'y ai retrouvé mon ami et collègue
J. Dufresnoy qui travaillait sur les fonctions de variable complexe. Avec

lui nous avons repris le travail de R. Salem et montré que les fractions
rationnelles A (z)/Q (z), où A est un polynôme à coefficients entiers et Q

le polynôme défini plus haut, telles que | A (.z)/Q (z) | < 1 sur | z | 1,

forment une famille compacte pour la convergence uniforme dans tout
compact de | z | < 1 ne contenant aucun pôle de ces fonctions. Non
seulement on retrouve ainsi le théorème de Salem, mais nous avons pu résoudre

affirmativement la conjecture de C. Siegel [14] que le nombre d'or (1 + y/ s)/2
est le plus petit élément d'accumulation de S [4]. Nous avons même pu
obtenir tous les éléments de S inférieurs à (l + ^/s )/2 + s, où s est un
nombre positif assez petit [5]. Cette étude est basée sur une généralisation
des méthodes de Schur pour les coefficients des fonctions holomorphes
bornées dans | z | < 1.

Malgré de nombreuses tentatives, je n'avais pas pu étendre les résultats

à d'autres ensembles de nombres algébriques, car si le coefficient du terme
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de plus haut degré du polynôme ayant le nombre algébrique pour zéro

est q 2, les déterminants récurrents de Hankel associés à la série de

Taylor de A (z)/Q (z) semblent avoir un dénominateur de la forme qn\
Ce n'est qu'après un séjour à Philadelphie (U.S.A.) en 1962, où je me suis

convaincu de l'efficacité des méthodes d'analyse ^-adique, que j'ai pu
montrer que ce dénominateur était en réalité q2n + 1. Il en résulte que si Sq

désigne l'ensemble des nombres algébriques a > 1, zéro d'un polynôme P
à coefficients entiers, le coefficient du terme de plus haut degré valant q > 1,

n'ayant aucun autre zéro dans | z | > 1 et pour lequel il existe un polynôme
à coefficients entiers A avec A (1/a) ^ 0, A (0) > q et | A (.z)/Q (z) | < 1

sur | z | 1, où Q désigne le polynôme réciproque de P, alors on a: Sq

est un ensemble fermé pour la topologie des nombres réels [12].

Mme M. Pathiaux [9] a montré tout récemment que si I est l'ensemble

des nombres algébriques n'ayant que le conjugué a dans | z | >1, alors I
est la réunion de tous les Sq pour q > 1. En 1978, Mme J. Bertin [1] a

découvert encore d'autres sous-ensembles fermés de I, dont la réunion
forme également 1. Tout en faisant ainsi progresser l'étude de l'ensemble I,
de nouvelles questions se posent et je souhaite que de nombreuses découvertes

récompensent les chercheurs qui ne se laissent pas décourager.
Une constatation réconfortante se dégage de l'évolution passée, à savoir

que chaque fois que l'on s'accroche à une question dans ce domaine, elle

finit par fournir des résultats; on n'a jamais le sentiment pénible de se

trouver devant un mur infranchissable comme cela arrive dans d'autres
domaines.
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