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REVÊTEMENTS RAMIFIÉS

par Daniel Lines

Introduction

Ce travail ne contient rien de nouveau, mais voudrait simplement
servir de référence à l'établissement des propriétés élémentaires de la

notion de revêtement ramifié en topologie algébrique. Dans cette partie
des mathématiques, on se trouve souvent dans la situation où l'on a un
revêtement fini du complémentaire d'une sous-variété de codimension deux

dans une variété (par exemple un nœud ou un enlacement de dimension

n - 2 dans la sphère Sn) que l'on aimerait « étendre » à cette dernière.

Cette extension est ce qu'on appelle un revêtement ramifié. Le but de cet

article est de montrer que sous des hypothèses très simples on arrive à des

théorèmes satisfaisants d'existence et d'unicité des revêtements ramifiés.

Pour une définition plus générale des revêtements ramifiés, le lecteur est

renvoyé à l'article de R. H. Fox [1]. Je tiens à remercier le professeur
Claude Weber, qui m'a initié aux arcanes des revêtements ramifiés, pour
son aide et ses utiles suggestions.

Toutes les variétés considérées sont des variétés de classe C° compactes,
sans bord; elles peuvent avoir plusieurs composantes connexes. On dénote

par dim X la dimension de Lebesgue de X.
Si X et Y sont deux variétés de dimension m et n respectivement, le F

(et donc m < n), on dit que X est une sous-variété localement plate de Y
si pour tout point x de X, il existe un voisinage U de x dans Y et un homéo-
morphisme (p : U -> Dn x jy-m 0ù Dk désigne la boule unité ouverte
de Rk tels que <p (UnX) Dm x { 0 } et (p (x) (0; 0). (Un nœud
apprivoisé est une sous-variété localement plate de S3, un nœud sauvage
ne l'est pas.)

Définition. Soient M et N deux variétés compactes de dimension
n > 2, B une sous-variété localement plate de codimension 2 de TV et
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f : M-+N une application continue surjective. Soit A /-1 (B). On
dit que / est un revêtement ramifié de N (ramifié sur B et d'ensemble de

ramification A) si:

1) /1 M \ : M\ ^4 ——v N\ B est un revêtement fini.

2) N\B est exactement l'ensemble des points de N qui possède la pro¬
priété de revêtement.

3) Les composantes connexes des f1 (U) où U a N est un ouvert quel¬

conque forment une base de la topologie de M.

Remarques. La condition 2) signifie simplement que B est l'ensemble
des points « singuliers » et qu'on ne peut pas étendre / en un vrai
revêtement sur une partie de B.

La condition 3) assure que A n'est pas trop « gros » (dans un sens à

préciser ci-dessous) et empêche par exemple que la projection /: S2 >S2

qui identifie tout l'hémisphère sud y compris l'équateur en un point ne soit

un revêtement ramifié. En effet, / satisfait aux propriétés 1) et 2) avec

B — un point, A — hémisphère sud mais l'image réciproque de tout
voisinage ouvert de B contient A et contredit donc 3).

Lemme 1. Si / : M > N est un revêtement ramifié sur B, d'ensemble de

ramification A alors

i) dim A < n — 2.

ii) A est sans points intérieurs et ne sépare pas localement M (c'est-à-dire

que tout point de A possède un système fondamental de voisinages

{ Ut }ieI dans M tel que Ut\A soit connexe pour tout i).

Démonstration de i). Montrons tout d'abord que toute fibre de / est

totalement discontinue.
Soit yeMetxef'1 (y). Soit C un connexe de / "1 (y qui contient x9

il faut voir que C est réduit à x. En effet, il existerait sinon x' distinct de x,
x' e C. Par la condition 3) on peut trouver un ouvert U contenant y et

tel que/-1 (U) u Vt où les Vt sont connexes disjoints et tels que
iel

x e Vig 9 x' e Vio, avec i0 =£ i'0. Alors C n Vio et C n u Vt) sont
ii=io

deux ouverts disjoints non-vides de C dont la réunion égale C, ce qui est

absurde. /_1 (y) est un sous-espace compact totalement discontinu, il
est donc de dimension de Lebesgue zéro./| A : A >B est une application
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fermée puisque A est compact. Le théorème VI 7 page 91 de [2] montre

que dim A < dim B n — 2.

Démonstration de ii). Si A avait des points intérieurs, A contiendrait

une boule ouverte et donc aussi une boule fermée ß de dimension n. Comme

dim ß < dim A puisque ß est un fermé de A, on aurait dim A > n, ce

qui contredit i). Montrons que A ne sépare pas localement M. Soit a un

point de A et V une carte de M centrée en a. On peut supposer que V est

homéomorphe à R"; A n V est donc homéomorphe à un fermé F de Rn

et dim F < n - 2. Considérons F' F u { oo } c R'1 u { oo }

Sn dim F' </7-2 car on ne peut augmenter la dimension d'un métrique

séparable en lui ajoutant un seul point (cf. [2] page 19). Comme R" \ F

Sn\FR" \ F est connexe si et seulement si H0{Sn\F') 0 (où

H0 est l'homologie (singulière) réduite à coefficients entiers). Par la dualité

d'Alexander 2) H0 (Sn\F') est isomorphe à H11'1 (F' : Z) qui est nul

puisque dim F' < n — 2.

C.Q.F.D.

Proposition 1 .Si f : M N est un revêtement ramifié sur B d
'ensemble de ramification A, alors A est une sous-variété localement plate de

codimension 2 de M. De plus f\ A: A >B est un revêtement non ramifié)
fini de B.

Démonstration. Si a e A et b f (a) les propriétés 3) et 4) ainsi que le

fait que B est localement plat dans N assurent qu'il existe un voisinage
ouvert U de b dans N et un homéomorphisme \j/ : U D2 o\x W

c R"-2 est la boule unité et D2 c: C le disque unité tels que ij/ (BnU)
W x { 0 }, \// (b) (0; 0) et que la composante connexe V de/-1 (U)

qui contient a soit telle que V\ A soit connexe. /1 V\ A est donc un
revêtement fini connexe de U\B. Comme U\B est homéomorphe à

W x D*2 (où D*2 désigne le disque ouvert privé de l'origine) la classification

des revêtements montre qu'il existe un homéomorphisme (p : V\ A
> W x D*2 tel que

x) « Si X et Y sont métriques séparables (par exemple des variétés paracompactes)
et f : X-+ F est une application continue fermée telle que dim/ ~ x(j) < m pour tout
point y de Y, alors dim X < m + dim Y». v

2) Si K est un compact non vide de Sn, K =£ Sn on a : H 'l(K) ~ Hn-i-1 (Sn \K)V
pour z > 0, H désignant la cohomologie de Cech.
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I * Wx D*(x;z)

f g commute
Y Y

U\B W x D*2(x; zk)

pour un entier k positif bien défini.

Lemme 2. f\ V n A est injective (voir la démonstration plus loin).
Le lemme 2 admis on peut prolonger cp en un homéomorphisme cp : V

W* D2 défini ainsi sur V n A : si x eV n A et xj/ of(x) (w; 0)
où w e W, on pose alors cp (x) (w; 0). Montrons que c'est un
homéomorphisme: cp est continue; en dehors de A n V par définition et en V n A
également car si xeVnA, cp (x) (w; 0) pour un certain w e W. Soit
W' x A un voisinage de (w; 0) où W' est une boule de centre w dans W
et A un sous-disque de D2. On a g (W' x A) M W' x A et donc

qui est bien un voisinage ouvert de x.
<p est injective car cp l'est et si x, y e V n A sont tels que cp (x) cp (jr)

on a /(x) /(y) et donc x y par le lemme 2.

cp est surjective car tous les points do W x D*2 sont atteints et si (w; 0)

g W x D2 vn cp'1 (w; 1 /n) ne N est une suite de V, comme M est

compacte elle a au moins une valeur d'adhérence v qui ne peut être que
dans V n A. Par continuité cp (v) (w; 0).

L'invariance du domaine (M est une variété de classe C°) assure que cp

est un homéomorphisme.
Ceci démontre le fait que A est une sous-variété localement plate de M

de codimension 2.

Au-dessus d'un point de B il ne peut y avoir qu'un nombre fini de points
de A (un discret dans un compact est fini), d'autre part la construction
ci-dessus montre que f \ A est un homéomorphisme local et que les fibres

ont même cardinal sur les composantes connexes de A ./| A est donc

un vrai revêtement.

L'entier k qui apparaît dans la construction est appelé Yindice de

ramification de/au point a. On voit que cet indice est constant le long de chaque

composante connexe de A.
Dans A il peut y avoir des points d'indice de ramification égal à 1

(/ est alors un vrai revêtement au voisinage des composantes connexes qui

cp~1(W'xA) f-1 (fir'1 (W'xA))
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contiennent ces points); la condition 2) de la définition exige qu'il y ait

au-dessus de chaque point de B au moins un point d'indice supérieur ou

égal à 2.

Démonstration du Lemme 2. Il faut montrer que/| V n A est injective.

Par l'absurde, supposons qu'il existe x et y e V n A x y tels que f (x)

f (y). Soient Vx et Vy des voisinages disjoints de % et y. La condition 3)

de la définition assure qu'il existe un voisinage ouvert ZJ' de/(x) f(y)
dans U tel qu'une composante connexe Sx de/~1(C7') soit contenue

dans Vx et une autre dans Vr Quitte à restreindre U' on peut supposer

que \jj (U') W x A2 où W c= W est une boule concentrique contenue

dans Wet A2 c D2 est un disque centré en 0 de rayon plus petit. <p (SX\A)
et cp (Sy\A) sont alors deux composantes connexes non vides distinctes

de g'1 (W' x d*2) ce qui est absurde puisque g~x {W' x A*1) W' x A*2

est connexe.

Existence et unicité des revêtements ramifiés

Proposition 2 (Existence). Soit N une variété de dimension n > 2 et

B c N une sous-variété localement plate de codimension 2.

p : Y >N\B un revêtement non ramifié fini, alors il existe une variété

compacte M de dimension n, une sous-variété A c= M localement plate
de codimension 2 et une application f : M >N telle que : f soit un
revêtement ramifié sur une partie B' de B et que f | M\A : M\A > N\B
soit un revêtement isomorphe à p.

Remarque. Il se peut que p puisse s'étendre en un revêtement non ramifié
sur certaines composantes connexes de B, B' est alors une partie propre de B

ou même sur tout B, B' est alors vide et / est un vrai revêtement.

Démonstration. Soit b g B. Soit U un voisinage ouvert de b dans N et
\f/ : U >W*D2 un homéomorphisme où W c= R"~2est la boule-unité
et D2 a C le disque-unité et tel que i// (b) (0; 0) \j/ (Br\U) W x { 0 }.

Soit U*= xj/'1 (W xD*2). p |j?-1 (£/*) [/* est un revêtement non
ramifié fini de U*. Soit p_1 (C/*) Vt u Vr sa décomposition en
composantes connexes, p | Vt >-t/*estun revêtement fini connexe. Comme W
est contractile il existe des homéomorphismes (pt : Vi -> W x D*2 tels

que les diagrammes
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