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6. MINORATIONS D’EXPOSANTS

6.1 Dans ce chapitre, nous démontrerons le théoréme 1.8. Nous
conservons les notations précédentes et supposons de plus r primitive.
Il nous faut rappeler briévement quelques résultats de [Ko].

Nous avons déja dit que r, est irréductible; ceci entraine que le degré n
de r est une puissance de la caractéristique résiduelle p de F, disons n = p a
d > 1. Le degré de K sur F, est alors p*? et 'on démontre que le groupe
V = G, = Gal (K/F,) est un groupe abélien d’exposant p; on peut donc
le considérer comme un espace vectoriel de dimension 2d sur le corps fini
F, a p éléments.

6.2 Sur cet espace vectoriel, r; définit une forme symplectique f, a
valeurs dans y,, le groupe des racines de I'unité d’ordre p dans C*, autrement
dit, f est une application bilinéaire alternée de V' x V dans pu, p, €tant
considéré de fagon évidente comme un espace vectoriel sur F,,.

Pour définir f, prenons un relévement R; de r;. Si a (resp. b) est un
¢lément de ¥, prenons un représentant a (resp. b) de a (resp. b) dans Wp,.
Alors R, (aba~'bh~ 1) s’écrit sous la forme f (a, b) 1 a, 00 1 4 estla matrice
d’unité d’ordre p?: en effet, r, (aba~*b~ 1) est trivial. H. Koch montre
que on a f (a, b) € u, et que f est symplectique.

Le fait que r, soit irréductible équivaut au fait que f soit non-dégénérée.

Le groupe G = Gal (K/F) agit par conjugaison sur V en respectant la
forme symplectique f. Cette action se factorise en fait par Gal (F/F).
On peut exprimer le fait que r est primitive, en disant que V ne contient
aucun sous-module sur G qui soit totalement isotrope.

6.3 L’on peut facilement construire des relévements de r;. Soit X
un sous-espace lagrangien de V, i.e. un sous-espace totalement isotrope
maximal. Soit £ I’extension de F; fixée par X. On a alors [K : E] = [E : F,]
= p? et il existe un caractére y de W, tel que la représentation induite de X
a Wr, releve ry.

Inversement, si E est une extension de F, telle qu’un caractére de W,
induise un relevement de r;, alors E est incluse dans K et X = Gal (K/E)

est un sous-espace lagrangien de V. De plus, tout relévement de r, est
induit & partir de W;.

6.4 L’on peut donner une condition nécessaire (et suffisante si d = 1)
pour que le caractere y de Wy induise & Wpr, un relévement de r;.
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Posons H = V/X = Gal (E/F;). Soit s un élément de H. Définissons
le caractére A, de W de la fagon suivante: si x € Wi, on note ny (x) sa
projection dans X, et on appelle § un représentant quelconque de s dans V.
Alors A  est donné par la formule suivante:

As(x) = f(5,myx(x)) pour xeWg.

On vérifie facilement que I’application s — A, est un homomorphisme
de H dans le groupe des caractéres de Wy triviaux sur Wy. De plus, comme
K est une extension abélienne de F,, H agit trivialement (par conjugaison)
sur Wg/Wy, et A est invariant par H.

Remarques. 1) f étant non-dégénérée, le caractére A, est non-trivial
pour se H, s # 1.

2) E étant galoisienne sur F,, le groupe H agit sur les caractéres de
Wy par x*(x) = x (oxo™ '), ol o est un représentant dans Wy, de I'élément
s de H.

PrROPOSITION 6.4. Soit x wun sous-espace lagrangien de V fixant le
corps E. Soit y un caractére de Wy. Si y induit a Wp, un relévement
de ry, l'ona y*~' = A, pour tout élément s de H. Si d = 1, cette
derniére condition est suffisante pour que y induise un relévement de r.

6.5 Démonstration. Montrons d’abord la nécessité de la condition:
posons p = Indzﬁlx. SiseHet xe Wg ona

) = gloxe i xTh),

ou ¢ est un représentant (quelconque) de s dans Wr,.
Mais comme le commutateur ¢ x ¢~ ' x~! est dans Wy, la matrice

p (ox o~ x~1) est la matrice scalaire
y(exo 1x71), 1a.
Par suite, si § est 'image de ¢ dans V, on a:
LT = Gy () = A,(x)  de Tt = A

Si d = 1, E est une extension cyclique de F, de degré premier, et il
existe un caractére y, de Wy tel que y, induise un relévement de r,. On a
donc yi~' = A,. Mais il résulte de [Bu, p. 33] que le caractére y de Wy
induit un relévement de r, si et seulement siona 3~ ! = 571 e x* 7! = A,

On a démontré la proposition 6.4.
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6.6 Le théoreme 1.8 de lintroduction dit que I'exposant de r vérifie
P'inégalité
a(@) >p* + '+ 1) a(KJF), avecégalitési d = 1.

On a noté en 5.3 I’égalité ea (r) = p? (e—1) + a(ry). Le lecteur véri-
fiera sans peine que 1’on a en outre « (K/F;) = e« (K/F). Il nous suffit
donc de démontrer I'inégalité

a(ry)=>p" +(P*+1)«(K/F,), avecégalittsi d =1.

Remarquons que le théoréme de Hasse-Arf appliqué a Dextension
abélienne K de F,; nous dit que « (K/F,) est un entier.

6.7 Prenons donc un sous-espace lagrangien X de V, fixant I'exten-
sion E de Fy, et choisissons un caractere y de Wy qui induise a Wr, un
relevement p de ry.

Soit s un élément non-trivial de H = Gal (E/F,). Alors y*~ ! = J
définit une extension £ de E, contenue dans K, totalement (et sauvagement)
ramifiée de degré p sur E: en effet, la restriction de p a W est somme des
caractéres y° pour s € H. Comme p est irréductible, ces caractéres sont tous
distincts et ¥*~ ! est non-trivial. Comme I’image par p de Wy est formée de
matrices scalaires, y°~ ' est trivial sur Wy. Par suite I’extension E, de E
fixée par Ker (y°~ 1) est contenue dans K, cyclique sur E, donc de degré p
sur E.

Nous noterons L, ie corps des invariants de s dans £ d’ou [E : L] = p.

Le groupe de Galois de E sur L est le groupe H, engendré par s. Celui
de K sur L est I'image réciproque ¥V, dans V, du sous-espace H, de H.
Celui de K sur Ej est I'orthogonal V5 de V.. Enfin, celui de E, sur E est
XV

6.8 Le caractere y de Wy induit a W, une représentation irréductible
de degré p de Wi . La représentation projective correspondante a pour
noyau Wg_, comme il est facile de le vérifier. Soit a, 'exposant du conduc-
teur de E, sur E:

a, =a(*"") = a(l).
La proposition 3 de [Bu, p. 31] peut alors se traduire en I'inégalité
a(y) =as + B(E[Ly).
Si d = 1 cette valeur a, + B (E/L,) est d’ailleurs exactement la valeur

minimale des a (x), ol y parcourt les caractéres de W, induisant un relé-
vement de r,.

L’Enseignement mathém., t. XXVI, fasc. 1-2. 12
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Choisissant bien le sous-espace lagrangien X, nous essaierons d’évaluer
a, et B(E/L)).

6.9 Rappelons que « (K/F,) est le plus grand indice m > 0 tel que le
sous-groupe de ramification V'™ de V soit non nul. Mais le groupe Gal (F,/F)
agit par conjugaison sur V; en respectant la forme symplectique f associée
a r, et les V'™ sont des sous-modules de V' pour cette action. Mais I’on sait
que V ne possede pas de sous-module totalement isotrope non-trivial.

On en déduit d’abord que la restriction de fa V'™ est non-dégénérée si
V'™ est non-trivial, et aussi que si V'™ est non-trivial, '™ n’est pas inclus
dans X; 'image de V'™ dans H = V/X, qui est égale a H™, est alors non-
triviale. On a donc démontré la propriété suivante:

LEMME 6.9. Ona o(K/F,) = a(E[F)).

6.10 1l nous faut maintenant choisir convenablement ’espace lagran-
gien X.

Commengons par prendre un sous-espace lagrangien X de Vg r)

= yX/FU Pprolongeons X en un sous-espace lagrangien X de V. Alors

on a X = Xy et si E est Iextension fixée par X, on a f(K/E)

= B (K/Fy).

Choisissons deux €léments § et §; de Vg, pp) €t Xp(k r,) T€SPECtivement,
de fagon que 'on ait f (5, §,) # 1. Alors § définit un élément s non-trivial
de H = V/X.

Soit E; le corps fixé par 'orthogonal de § dans X. L’image s, de §,
dans Gal (Ej/E) engendre ce groupe. Mais §; appartient a Xpg/p
= X*K/E)_Sj donc on appelle Y le groupe Gal (E,/E), les groupes de rami-
fication de Y en numérotation supérieure sont ¥ = Y pour0 <i < « (K/E)
et Y' =1 pouri > a(K/E).

Mais

2 (K/E) = ¢ge(B(K/E)) = oxp(B(K[Fy)) = @x/p¥xr (2 (K[Fy))
o (K/E) = ¢gp0 Ygse © Yir (0 (K[Fy)) = g, (2 (K[Fy)).
Par suite, le conducteur de E sur E est
«(K/E) + 1 > a(K/F;) + 1.

Remarque. S’il n’y a qu’un seul saut dans la ramification de V (i.e. si
V =V pxrp alorson a a(K/E) = a(K/F;) comme le lecteur le vérifiera
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aisément. C’est le cas en particulier si d = 1 et plus généralement si V
est un module irréductible sur Gal (F,/F).

6.11 On a ainsi obtenu l'inégalité

ol L, est le corps fixé par s dans E. Mais s est un élément de H a(K/F1)
= H*KIFV = Hy . Par conséquent, on a f(E/L) = B (E[F)).

D’aprés le théoréme donnant le conducteur d’une représentation
induite [Se, p. 109, Cor.], on a

a(p) = d(E[Fy) + a(y)
donc
a(p) > d(E[Fy) + B(E[F;) +1 + a(K/[Fy)

a(p) > p*(«(K/F)+1) + a(K/Fy). C.QF.D.

Pour d = 1, la remarque de 6.10 et la proposition 3 de [Bu, p. 31]
donnent I’égalité
a(r) = p* (¢ (K[F)+1) + a(K[Fy).

6.12 Supposons que le groupe ¥ soit un module irréductible pour
’action de Gal (F,/F). A-t-on alors 1’égalité dans le théoréme 1.8 ? Cette
question reste ouverte.
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