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6. Minorations d'exposants

6.1 Dans ce chapitre, nous démontrerons le théorème 1.8. Nous

conservons les notations précédentes et supposons de plus r primitive.
Il nous faut rappeler brièvement quelques résultats de [Ko].

Nous avons déjà dit que rx est irréductible; ceci entraîne que le degré n

de r est une puissance de la caractéristique résiduelle p de F, disons n p d,

d > 1. Le degré de K sur Fx est alors p2d et l'on démontre que le groupe
V Gx Gai {KjFx) est un groupe abélien d'exposant p; on peut donc

le considérer comme un espace vectoriel de dimension 2d sur le corps fini

Fp ä p éléments.

6.2 Sur cet espace vectoriel, r1 définit une forme symplectique /, à

valeurs dans p le groupe des racines de l'unité d'ordre p dans Cx, autrement

dit, / est une application bilinéaire alternée de V x V dans pp, pp étant
considéré de façon évidente comme un espace vectoriel sur Fp.

Pour définir /, prenons un relèvement R1 de r1. Si a (resp. b) est un
élément de V, prenons un représentant ä (resp. b) de a (resp. b) dans WFv
Alors Rx (äbä~1b~ *) s'écrit sous la forme / (a, b) 1

pd, où 1
pd est la matrice

d'unité d'ordre pd: en effet, r1{àbâ~1b~1) est trivial. H. Koch montre
que l'on a / (<a, b) e pp et que / est symplectique.

Le fait que r1 soit irréductible équivaut au fait que/soit non-dégénérée.
Le groupe G Gal (K/F) agit par conjugaison sur V en respectant la

forme symplectique /. Cette action se factorise en fait par Gal (FJF).
On peut exprimer le fait que r est primitive, en disant que V ne contient
aucun sous-module sur G qui soit totalement isotrope.

6.3 L'on peut facilement construire des relèvements de rY. Soit X
un sous-espace lagrangien de V, i.e. un sous-espace totalement isotrope
maximal. Soit E l'extension de F1 fixée par X. On a alors [K : E] [E : FJ

pd et il existe un caractère % de WF tel que la représentation induite de x
à WFl relève rx.

Inversement, si F est une extension de Fx telle qu'un caractère de WE
induise un relèvement de rl9 alors F est incluse dans K et X Gai (.K/E)
est un sous-espace lagrangien de V. De plus, tout relèvement de rt est
induit à partir de WE.

6.4 L'on peut donner une condition nécessaire (et suffisante si d= 1)

pour que le caractère x de WE induise à WFl un relèvement de rt.



— 168 —

Posons H V/X Gai (F/i^), Soit s un élément de H. Définissons
le caractère Xs de WE de la façon suivante: si xe WE, on note nx (x) sa

projection dans X, et on appelle s un représentant quelconque de s dans V.

Alors Xs est donné par la formule suivante:

M — / (s, nx (x)) pour x e WE

On vérifie facilement que l'application s i-> Xs est un homomorphisme
de H dans le groupe des caractères de WE triviaux sur WK. De plus, comme
K est une extension abélienne de Fu H agit trivialement (par conjugaison)
sur WE/WK, et Às est invariant par H.

Remarques. 1) / étant non-dégénérée, le caractère ks est non-trivial

pour s e H, s 1.

2) E étant galoisienne sur Fu le groupe H agit sur les caractères de

WE par xs (*) X 1), ou a est un représentant dans Wf1 de l'élément
s de H.

Proposition 6.4. Soit x un sous-espace lagrangien de V fixant le

corps E. Soit x un caractère de WE. Si x Induit à Wf1 un relèvement

de rx, l'on a %s_1 ~ Xs pour tout élément s de H. Si d 1, cette

dernière condition est suffisante pour que x induise un relèvement de rx.

6.5 Démonstration. Montrons d'abord la nécessité de la condition:

posons p Ind^Ji^. Si s e H et x g We, on a

Xs'100 xicrxo'1 x'1)

où g est un représentant (quelconque) de s dans Wfv
Mais comme le commutateur gxg~1x~1 est dans WK, la matrice

p (ox g~ 1 x'1) est la matrice scalaire

xOxxff-1*-1) lpd.

Par suite, si s est l'image de g dans F, on a :

Xs-1 (X> f(s,nx(x))Xs(x) i.e. Xs'1

Si d 1, E est une extension cyclique de F, de degré premier, et il
existe un caractère Xo de WE tel que Xo induise un relèvement de On a

donc Xo-1 As. Mais il résulte de [Bu, p. 33] que le caractère x de WE

induit un relèvement de r1 si et seulement si on a xs~1 i-e- Xs~1 ^s•

On a démontré la proposition 6.4.
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6.6 Le théorème 1.8 de l'introduction dit que l'exposant de r vérifie

l'inégalité

a (r) > pd + (pd + 1) a (K/F), avec égalité si d 1

On a noté en 5.3 l'égalité e a (r) pd (e-1) + a(rx). Le lecteur vérifiera

sans peine que l'on a en outre oc (K/Fx) e a (K/F). Il nous suffit

donc de démontrer l'inégalité

a (ri) > Pd + (Pd +1) a (K/Fi) avec égalité si d 1

Remarquons que le théorème de Hasse-Arf appliqué à l'extension
abélienne K de F± nous dit que a (K/Fß) est un entier.

6.7 Prenons donc un sous-espace lagrangien X de V, fixant l'extension

E de Fu et choisissons un caractère y de WF qui induise à Wf1 un
relèvement p de rx.

Soit s un élément non-trivial de H Gai (L,/F1). Alors y5'1 Às

définit une extension Es de E, contenue dans K, totalement (et sauvagement)
ramifiée de degré p sur E: en effet, la restriction de p à WE est somme des

caractères yf pour s e H. Comme p est irréductible, ces caractères sont tous
distincts et ys~

1 est non-trivial. Comme l'image par p de WK est formée de

matrices scalaires, %s_1 est trivial sur WK. Par suite l'extension Es de E
fixée par Ker (ys~ est contenue dans K, cyclique sur E, donc de degré p
sur E.

Nous noterons Ls le corps des invariants de s dans E d'où [E : LJ p.
Le groupe de Galois de E sur Ls est le groupe Hs engendré par s. Celui

I de K sur Ls est l'image réciproque Vs dans V, du sous-espace Hs de H.
Celui de K sur Es est l'orthogonal VLS de Vs. Enfin, celui de Es sur E est

[ x/vî.

I 6.8 Le caractère y de WE induit à WLl une représentation irréductible
j de degré p de WLg. La représentation projective correspondante a pour
f noyau WEs, comme il est facile de le vérifier. Soit as l'exposant du conduc-

teur de Es sur E :

i as «(rv_1) a (As)

| La proposition 3 de [Bu, p. 31] peut alors se traduire en l'inégalité
| a(y)>asF ß (E/Ls).
J Si d =* 1 cette valeur as + ß (E/Ls) est d'ailleurs exactement la valeur

minimale des a (y), où y parcourt les caractères de WE induisant un
relèvement dq rt.

L'Enseignement mathém., t. XXVI, fasc. 1-2. 12
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Choisissant bien le sous-espace lagrangien X, nous essaierons d'évaluer

asetß(E/Ls).

6.9 Rappelons que a (K/FJ) est le plus grand indice m > 0 tel que le

sous-groupe de ramification Vm de V soit non nul. Mais le groupe Gal (FJF)
agit par conjugaison sur Vx en respectant la forme symplectique / associée

à r, et les Vm sont des sous-modules de V pour cette action. Mais l'on sait

que V ne possède pas de sous-module totalement isotrope non-trivial.
On en déduit d'abord que la restriction de / à Vm est non-dégénérée si

Vm est non-trivial, et aussi que si Vm est non-trivial, Vm n'est pas inclus
dans X; l'image de Vm dans H V/X, qui est égale à Hm, est alors non-
triviale. On a donc démontré la propriété suivante:

Lemme 6.9. On a ocÇK/FJ) — a(E/F1).

6.10 II nous faut maintenant choisir convenablement l'espace lagrangien

X.

Commençons par prendre un sous-espace lagrangien X de Vß(K/Fl)

ycc(K/Fi\ Prolongeons X en un sous-espace lagrangien X de V. Alors

on a X Xß(K/Fl) et si F est l'extension fixée par X, on a ß (K/E)
ß(K/F,).
Choisissons deux éléments s et s± de Vß(K/Fl) et XßiK/Fl) respectivement,

de façon que l'on ait / (s, sj) Al. Alors 5 définit un élément s non-trivial
de H V/X.

Soit Fs le corps fixé par l'orthogonal de 5 dans X. L'image $x de st
dans Gal (EJE) engendre ce groupe. Mais appartient à Xß(K/E)

xa{KIE). Si donc on appelle 71e groupe Gai {EJE), les groupes de

ramification de Y en numérotation supérieure sont Y1 Y pour 0 < / < a (K/E)
et Y1 1 pour i > a (K/E).

Mais

a (K/E) (pK/E (ß (K/Ej) (pK/E(ß (K/Fx)) cpK/E ^k/fi (a (K/F i))

a (K/E) (Pk/e ° ^k/e ° ÏÏejfi (a (K/Fi)) ^e/fi (a (^/^i)) •

Par suite, le conducteur de Es sur E est

oc (K/E) + 1 > a (K/FJ + 1

Remarque. S'il n'y a qu'un seul saut dans la ramification de V (i.e. si

V V ß(K/Fl) alors on a a (K/E) — oc(K/FJ) comme le lecteur le vérifiera
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aisément. C'est le cas en particulier si - 1 et plus généralement si V

est un module irréductible sur Gai F1).6.11 On a ainsi obtenu l'inégalité

«(z) > ß(E/Ls)+ « t) + 1

où Ls est le corps fixé par s dans E. Mais s est un élément de Ha(K,Fl)

H'Wi) He(E/Fl). Par conséquent, on a ß(E/Ls) ß(EIF1).

D'après le théorème donnant le conducteur d'une représentation

induite [Se, p. 109, Cor.], on aa(p) diElF,
donc

a (ß) >d{ElF1) + ß(ElFt)+ 1 + a

a p)>p" (a (K/F,) +1) + a C.Q.F.D.

Pour d1, la remarque de 6.10 et la proposition 3 de [Bu, p. 31]

donnent l'égalité
a (r) p* (a (K/FJ + 1) + a (KlFJ

6.12 Supposons que le groupe V soit un module irréductible pour
l'action de Gai (Fl/F). A-t-on alors l'égalité dans le théorème 1.8 Cette

question reste ouverte.
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