Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 26 (1980)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: REPRÉSENTATIONS DU GROUPE DE WEIL D'UN CORPS LOCAL

Autor: Henniart, Guy

Kapitel: 5. Représentations primitives

DOI: https://doi.org/10.5169/seals-51064

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Par hypothèse, la restriction de R à $W_F^{\alpha(R)} \cap W_K$ est sans point fixe non-trivial. Par suite, R vérifie la propriété A, et, utilisant le théorème 3.5, l'on voit qu'il faut démontrer:

$$e(K/F)(\alpha(R) + 1) \geqslant d(K/F) + \beta(K/F) + 1.$$

Lemme 4.4. On a

$$e(K/F)(\alpha(K/F) + 1) = d(K/F) + \beta(K/F) + 1$$
.

Démonstration. Rappelons que G = Gal(K/F). Par [Se, prop. 4, p. 72], on a

$$d(K/F) = \sum_{i=0}^{\infty} (|G_i| - 1) = \sum_{i=0}^{\beta(K/F)} (|G_i| - 1)$$

d'où

$$\begin{split} d\left(K/F\right) \,+\, \beta\left(K/F\right) \,+\, 1 \,=\, \sum_{i=0}^{\beta\left(K/F\right)} \left|\,\,G_{i}\,\,\right| \,=\, \left|\,\,G_{o}\,\,\right| \,\,\left(\,\,1 \,+\,\,\sum_{i=1}^{\beta\left(K/F\right)} \,\,\frac{\left|\,\,G_{i}\,\,\right|}{\left|\,\,G_{o}\,\,\right|}\,\,\right) \,\,=\, \\ =\, \left|\,\,G_{o}\,\,\right| \left(1 \,+\, \varphi_{K/F}\left(\beta\left(K/F\right)\right)\right) \,=\, e\left(K/F\right)\left(\alpha\left(K/F\right) \,+\,1\right) & \text{C.Q.F.D.} \end{split}$$

4.5 Il suffit donc de démontrer l'inégalité $\alpha(R) \geqslant \alpha(K/F)$, qui est claire puisque la restriction de r à $W_F^{\alpha(K/F)}$, donc aussi celle de R, est nontriviale. De plus, si l'on a $W_F^{\alpha(R)} \subset W_K$, on a $W_F^{\alpha(R)} \subset W_F^{\alpha(K/F)}$ d'où $\alpha(R) > \alpha(K/F)$ et l'inégalité est stricte. C.Q.F.D.

La remarque 1 qui suit [Bu, prop. 2, p. 25] donne aussitôt le corollaire suivant au théorème 4.3:

COROLLAIRE. Si la restriction de r à P_F est irréductible, on a

$$e(K/F) a(R) = n(d(K/F) + a(\chi_R))$$

et

$$a\left(\chi_{R}\right)>\beta\left(K/F\right)+1.$$

5. Représentations primitives

5.1 Nous conservons les hypothèses et notations précédentes. Ainsi r est une représentation projective de W_F , de type galoisien et de degré n. On notera F_1 la plus grande extension modérément ramifiée de F contenue dans le corps centrique K de r, et r_1 la restriction de r à W_{F_1} . Le groupe $G_1 = \operatorname{Gal}(K/F_1)$ est le sous-groupe de ramification sauvage de $G = \operatorname{Gal}(K/F)$.

Nous nous intéressons aux représentations r vérifiant:

- 1) n > 1;
- 2) r_1 est irréductible.

Ces hypothèses sont vérifiées si r est primitive non-triviale (voir [Ko], où l'on trouvera une description des représentations projectives primitives de W_F).

5.2 Comme r_1 est irréductible, sa restriction à P_F l'est aussi. On peut donc appliquer à r et r_1 le corollaire au théorème 4.3.

Soit R un relèvement de r; on notera R_1 la restriction de R à W_{F_1} . Soit ρ un relèvement de r_1 . On a alors

$$e(K/F) a(R) = n(d(K/F) + a(\chi_R))$$

et

$$e(K/F) a(\rho) = n(d(K/F_1) + a(\chi_{\rho})).$$

Remarque. De ces deux formules avec $\rho=R_1$, on tire (car $\chi_R=\chi_{R_1}$) $e\ a\ (R)=n\ (e-1)+a\ (R_1)$, où $e=e\ (F_1/F)$.

Cette dernière égalité peut être généralisée, cf. [He, chap. 7].

De plus l'on a $a(\chi_{\rho}) > \beta(K/F_1) + 1$.

5.3 Appelons b(r) (resp. $b(r_1)$) le minimum des $a(\chi_R)$ (resp. $a(\chi_\rho)$) quand R (resp. ρ) parcourt l'ensemble des relèvements de r (resp. r_1).

Supposons que l'on ait $b(r) = b(r_1)$. Prenons R tel que $a(\chi_R) = b(r)$. On a alors a(R) = a(r) et $a(R_1) = a(r_1)$, puisque $\chi_{R_1} = \chi_R$. Par suite, on a l'égalité

$$e a(r) = n(e-1) + a(r_1).$$

Le théorème suivant généralise légèrement le théorème 1.7 de l'introduction:

Théorème 5.3. Soit r une représentation projective de W_F , de degré n > 1 et de type galoisien. Supposons que r_1 soit irréductible. Alors on a $b(r) = b(r_1)$ et $e(a(r)) = n(e-1) + a(r_1)$, où l'on a posé $e(r) = e(r_1/F)$.

5.4 Démonstration. Il suffit de prouver la première égalité. Mais d'après 5.2, on a $b(r_1) > \beta(K/F_1) + 1$. Le théorème 5.3 est alors une conséquence directe de la proposition suivante:

PROPOSITION 5.4. Soit r une représentation projective de type galoisien de W_F . Si l'on a $b(r_1) > \beta(K/F_1)$, alors on a $b(r) = b(r_1)$.

Comme en 4.2, on définit le caractère χ_r de K^N , noyau de la norme de K^\times à F^\times . De même, on définit le caractère χ_{r_1} de K^{N_1} , noyau de la norme de K^\times à F^\times . Alors b(r) est le plus petit entier $m \ge 0$ tel que l'on puisse étendre χ_r en un caractère de K^\times trivial sur U_K^m . Par le lemme d'extension de [Bu, p. 14], c'est aussi le plus petit entier $m \ge 0$ tel que χ_r soit trivial sur $K^N \cap U_K^m$. On a un résultat analogue pour r_1 .

5.5 Il est clair que χ_{r_1} est la restriction de χ_r à K^{N_1} . Par conséquent, on a $b(r) \gg b(r_1)$. Remarquant que χ_r est trivial sur K^I , on voit que la proposition 5.4 découle, de façon évidente du lemme suivant:

Lemme 5.5. Soit m un entier strictement supérieur à β (K/F_1) . Alors on a

$$K^N \cap U_K^m = (K^{N_1} \cap U_K^m) \cdot (K^I \cap U_K^m).$$

Nous suivrons, pour démontrer ce lemme, l'argument de [Bu, p. 30]. Supposons $m > \beta$ (K/F_1) , et prenons $x \in K^N \cap U_K^m$. Le lemme de [Bu, p. 30] nous dit que H^{-1} (Gal (F_1/F) , $U_{F_1}^m$) est nul. Il nous permet d'écrire

$$N_{K/F_1}(x) = \prod_{i=1}^{v} \bar{y}_i^{s_{i-1}}$$
, où les \bar{y}_i appartiennent à $U_{F_1}^{m'}$, m' étant le

plus petit entier supérieur ou égal à $\varphi_{K/F_1}(m)$, et où les s_i , i=1,...,v, sont des éléments de G dont les images dans $\operatorname{Gal}(F_1/F)$ engendrent ce groupe.

Comme on a $m > \beta(K/F_1)$, \bar{y}_i est la norme de K à F_1 d'un élément y_i de U_K^m [Se, chap. V, § 6]. On peut donc écrire:

$$x = x' \prod_{i=1}^{v} y_i^{s_i-1}$$
 avec $x' \in U_K^m$ et $N_{K/F_1}(x') = 1$.

Par suite

$$x \in (U_K^m \cap K^{N_1}) \cdot (K^I \cap U_K^m)$$

et l'on a

$$K^N \cap U_K^m \subset (U_K^m \cap K^{N_1}) \cdot (K^I \cap U_K^m),$$

d'où l'égalité puisque l'inclusion dans l'autre sens est évidente. Ceci prouve le lemme 5.5 et donc le théorème 5.3.