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Par hypothèse, la restriction de R à JVF(R) n WK est sans point fixe non-
trivial. Par suite, R vérifie la propriété A, et, utilisant le théorème 3.5,

l'on voit qu'il faut démontrer:

e (K/F) (a (R) + 1) > à (K/F) + ß (K/F) + 1

Lemme 4.4. On a

e (K/F) (a (K/F) + 1) à (K/F) + ß (K/F) + 1

Démonstration. Rappelons que G =* Gai (K/F). Par [Se, prop. 4,

p. 72], on a
00 ß (K/F)

d (K/F)X (|G,| - 1) X (|G,| - 1)
i=0 1=0

d'où
P(K/F) / ß(K/F) I

G
I x

d{KjF) + ß (K/F)+ 1 X |G,| |G#| 1+ X t^Ti 0 \ i— 1 I G0 I /
| G0 | (1 + <pK/F(ßK/F)))e (K/F) (a (K/F) + 1) C.Q.F.D.

4.5 II suffit donc de démontrer l'inégalité a (R) > a (K/F), qui est

claire puisque la restriction de r à Wp(K/F), donc aussi celle de R, est non-
triviale. De plus, si l'on a Wp(R) a WK, on a WpiR) ^ WapK/F) d'où

a (R) > a (K/F) et l'inégalité est stricte. C.Q.F.D.
La remarque 1 qui suit [Bu, prop. 2, p. 25] donne aussitôt le corollaire

suivant au théorème 4.3:

Corollaire. Si la restriction de r à PF est irréductible, on a

e (K/F) a (R) n(d(K/F) +a(jR))
et

a (Xr) > ß (K/F) + 1.

5. Représentations primitives

5.1 Nous conservons les hypothèses et notations précédentes. Ainsi r
est une représentation projective de WF, de type galoisien et de degré n.

On notera F1 la plus grande extension modérément ramifiée de F contenue
dans le corps centrique K de r, et r± la restriction de r à WFy Le groupe
Gt Gai (.K/Fi) est le sous-groupe de ramification sauvage de

G Gai (K/F).
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Nous nous intéressons aux représentations r vérifiant:

1) n > 1;

2) r1 est irréductible.

Ces hypothèses sont vérifiées si r est primitive non-triviale (voir [Ko],
où l'on trouvera une description des représentations projectives primitives
de WF).

5.2 Comme est irréductible, sa restriction à PF l'est aussi. On peut
donc appliquer à r et r± le corollaire au théorème 4.3.

Soit R un relèvement de r; on notera R± la restriction de R à Wfv
Soit p un relèvement de i\. On a alors

e (KlF) a (R) n(d(K/F) + a(xR))
et

e (K/F) a (p) n (d (K/F,) +a (Xp))

Remarque. De ces deux formules avec p Ru on tire (car Xr^Xrj)
e a (R) n (e - 1) + a (Rx), où e e (F1/F).

Cette dernière égalité peut être généralisée, cf. [He, chap. 7].
De plus l'on a a (xp) > ß (K/Fß) + 1.

5.3 Appelons b (r) (resp. b (rx)) le minimum des a (%R) (resp. a (%p))

quand R (resp. p) parcourt l'ensemble des relèvements de r (resp. r±).
Supposons que l'on ait b (r) b (rx). Prenons R tel que a (xR) b (r).

On a alors a (R) a(r) et a(Rß) a(rß), puisque Xrx Xr• Par suite,
on a l'égalité

e a (r) n (e - 1) + a (rx)

Le théorème suivant généralise légèrement le théorème 1.7 de
l'introduction :

Théorème 5.3. Soit r une représentation projective de WF, de degré
n > 1 et de type galoisien. Supposons que r1 soit irréductible. Alors on a
b (r) b (r j) et ea(r) n(e— 1) + a(rt), où l'on a posé e eiJFJF).

5.4 Démonstration. Il suffit de prouver la première égalité. Mais
d'après 5.2, on a b (rj) > ß (K/FJ + 1. Le théorème 5.3 est alors une
conséquence directe de la proposition suivante:
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Proposition 5.4. Soit r une représentation projective de type galoisien
de WF. Si Von a h (r j) > ß (K/Fß), alors on a b (r) b (rx).

Comme en 4.2, on définit le caractère yr de KN, noyau de la norme de

Kx à Fx. De même, on définit le caractère Xr1 de KNl, noyau de la norme
de Kx à Fx. Alors b {r) est le plus petit entier m > 0 tel que l'on puisse
étendre yr en un caractère de Kx trivial sur U Par le lemme d'extension
de [Bu, p. 14], c'est aussi le plus petit entier m > 0 tel que xr soit trivial sur
KN n UF. On a un résultat analogue pour rv

5.5 II est clair que %n est la restriction de %r à KNl. Par conséquent, on
a b (r) > b (rt). Remarquant que %r est trivial sur K1, on voit que la
proposition 5.4 découle, de façon évidente du lemme suivant:

Lemme 5.5. Soit m un entier strictement supérieur à ß (KjFß). Alors

on a
KN nul (KNl n n UmK).

Nous suivrons, pour démontrer ce lemme, l'argument de [Bu, p. 30].

Supposons m > ß(K/F1), et prenons x e KN n U%. Le lemme de [Bu,

p. 30] nous dit que H~1 (Gai (Fl/F), UfJ est nul. Il nous permet d'écrire

Nr/fi(x) El °d les Pi appartiennent à Uf[9 m' étant le
i= 1

plus petit entier supérieur ou égal à (pKjFl (m), et où les sh i 1, v,

sont des éléments de G dont les images dans Gal (FJF) engendrent ce

groupe.
Comme on a m > ß (.K/Ft), yt est la norme de K k F1 d'un élément

yt de Uk [Se, chap. V, § 6]. On peut donc écrire:

V

x x' El .VE~1 avec x'e Ul et NK/Fl(x') 1.
î=i

Par suite

xe(Ul n KNl)nU'D

et l'on a KnnUlc=(Ul n KNi) n Ul),

d'où l'égalité puisque l'inclusion dans l'autre sens est évidente. Ceci prouve
le lemme 5.5 et donc le théorème 5.3.
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