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Evidemment p (Wy) commute a H et 'on a r.(nop) (Fr™) = n (o)™
n(p,)” ™ = 1,, donc r. (nop) est de type galoisien. C.Q.F.D.

2.7 THEOREME 2.7. Toute représentation projective de Gy (resp. Wy)
posséde un relevement.

Ce fait est bien connu pour Gy [We 2, p. 2]. Ainsi une représentation
projective de type galoisien de W a un relévement de type galoisien.

Pour le cas de Wy (c’est le théoréme 1.4 de I’introduction), ’on utilise
le théoréme 2.2. On a donc une représentation non-ramifiée p de W,
les €léments de p (W) commutant & ceux de H, et telle que r. (m 0p)
soit de type galoisien. Il existe un relévement R de r . (n op). Mais alors p
commute a R, puisque les éléments de p (W) commutent entre eux et a
ceux de H. La représentation R.p~ ! est un relévement de r. C.Q.F.D

3. EXPOSANTS ET CONDUCTEURS

3.1 Si R est une représentation linéaire de Wy, on peut définir, a
laide de la distribution de Herbrand [We 1, App. I] I’exposant de son
conducteur d’Artin, appelé plus brievement exposant de R, et noté a (R).
Si R se factorise a travers le groupe fini G = Gal (K/F), c’est aussi ’expo-
sant, défini dans [Se, p. 107], de la représentation de G que R détermine.
Cet exposant ne dépend que de la restriction de R a I,. Pour une représen-
tation non-ramifiée p, on a a(p) = 0, et si p commute a R, on a a(R)

= a(R.p).

3.2 L’on peut définir, comme dans [Se, p. 83, Rem. 1], les sous-groupes
Wi de Wp pour ue R, u > —1: ce sont les sous-groupes de ramification
de Wy en numérotation supérieure. Si G = Gal (K/F) est un quotient fini
We/Wy de Wy, on a G* = Wy Wp/Wg. On a Wit = W, le groupe W3
est le groupe d’inertie I, et le groupe d’inertie sauvage Py est la fermeture

de 'union des Wy pour ¢ > O.
Si K est une extension galoisienne finie de F et G son groupe de Galois

sur F, nous poserons
a(K/F) = sup {u|G*#1} et PB(K/F)=sup{v|G,#1}.

On a
B(K[F) = 'ﬁK/F(O‘ (K/F)) et «(K[F) = Ok /r (ﬁ (K/F))

ol @k r et Yg r sont les fonctions de Herbrand [Se, p. 80].
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3.3 Soit R une représentation linéaire de W5. Si R est triviale, posons
« (R) = 0. Sinon, nous noterons « (R) le plus grand indice u tel que l'image
de R (W% soit non-triviale. Un tel o (R) est bien défini: si R est non-
ramifiée, on a R(Wy) # 1 et R(Wy =1 pour ¢ > —1, d’ou «(R)
= —1. Si R est ramifiée, prenons une représentation non ramifiée p,
commutant & R, et telle que R.p soit galoisienne. Soit K le corps fixe
par le noyau de R.p. Alors a (R . p) existe et vaut « (K/F). Mais il est
clair que pour u > —1, on a R.p(Wy) = R (Wg). Ainsi o (R) est
défini et vaut o (K/F).

3.4 1l est bien connu que si y est un caractére de Wy, alors on a
a(y) = a(y) +1 [Se, p. 109, prop. 5].

Nous voulons généraliser cette formule. Nous dirons qu'une représen-
tation linéaire R de Wy posséde la propriété A sila restriction de R & WH™®
est sans point fixe non-trivial.

Il est clair qu'une représentation irréductible R vérifie la propriété A:
en effet, comme W% est invariant dans Wy, la restriction de R a W™ a
des composantes irréductibles conjuguées entre elles; cette restriction étant
non-triviale, aucune composante ne peut &tre triviale.

3.5 La proposition suivante est une traduction de [Se, p. 108, Cor. 1]:
PrOPOSITION 3.5. Soit R une représentation linéaire de Wy se fac-
torisant par le groupe fini G = Gal (K/F). Alors on a

0

Y |G,]| codim (V°),

I olv=0

a(R) =
o VO désigne [’espace des points fixes par le groupe G,.

THEOREME 3.5.  Soit R une représentation linéaire de degré n de Wy,
vérifiant la propriété A. Alors ona a(R) = n (x (R)+1). b

Démonstration. C’est clair si R est non-ramifiée. Si R est ramifiée,

on peut, par le théoréme 2.2, se ramener a R de type galoisien se factorisant
par le groupe fini G = Gal (K/F).
Alors
B
Y. codim (V°%).]|G,],

’ 0 | v=0

a(R) =

N 1_11) Cette formule avait été signalée, sans démonstration, dans une prépublication de
. Howe.
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ou f = B(K/F). Maison a G, = W§™ . Wy/Wy et R vérifie la propriété
A. Par suite on a dim ¥°6 = O et aussi dim V% = 0 pour v < . On a donc
| G, |
A

B |Gv| B
a(R)y =n ) —=n<1+z
v=0 IGOI v=1

d’olt a (R) = n(1+a(R)). C.Q.F.D.

> = n (1 +a(K/F)),

3.6 COROLLAIRE 1. Soient R et S deux représentations linéaires de
W de degrés n et m respectivement. Supposons que R, S et R® S
vérifient la propriété A. Alors on a a(R®S) < sup (ma (R), na (S))
avec égalité si ma (R) # na(S).

Rappelons qu’une représentation linéaire est dite primordiale si I’on
ne peut abaisser son exposant en la tordant par un caractére. Le corollaire 2
implique immédiatement le théoréme 1.5.

COROLLAIRE 2. Soit R une représentation linéaire de Wy, primordiale,
de degré n, et vérifiant la propriété A. Soit y un caractére de Wy. Alors

ona a(R®y) = sup (a(R), na(x)).

3.7 Démonstration des corollaires. Le théoreme 3.5 nous permet
d’écrire

@41 =" o sy 1=
n m

Mais il est clair que 'on a « (R®S) < sup (« (R), « (S)), avec I’égalité
si o (R) # o (S). On en déduit le corollaire 1. Prenant S = y, on obtient
le corollaire 2, puisque, par hypothése, on a toujours a (R®y) > a (R).
C.Q.E.D.

Une conséquence immeédiate du corollaire 2 est la remarque suivante:

Remarque 3.7. Soit R une représentation linéaire de Wy, irréductible
et de degré n. Si a (R) n’est pas multiple de n, R est primordiale.

4. CARACTERES CENTRIQUES

4.1 Rappel et notations. Si L est une extension finie de F, nous note-
rons 7, : W, — L* Tapplication de réciprocité définie par la théorie du
corps de classes local. On sait qu’elle donne une bijection entre les carac-
téres de L et ceux de W, par la formule y — yot;.
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