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Evidemment p (WF) commute à ET et l'on a r .(nop) (Frmn) n (cp)mn

71 (<Po)~mn I«» donc r (710p) est de type galoisien. C.Q.F.D.

2.7 Théorème 2.7. Tbwte représentation projective de GF (resp. WF)
possède un relèvement.

Ce fait est bien connu pour GF [We 2, p. 2]. Ainsi une représentation
projective de type galoisien de WF a un relèvement de type galoisien.

Pour le cas de WF (c'est le théorème 1.4 de l'introduction), l'on utilise
le théorème 2.2. On a donc une représentation non-ramifiée p de WF,
les éléments de p (WF) commutant à ceux de H, et telle que r (n op)
soit de type galoisien. Il existe un relèvement R de r (n op). Mais alors p
commute à R, puisque les éléments de p (fLF) commutent entre eux et à

ceux de H. La représentation R.p-1 est un relèvement de r. C.Q.F.D

3. Exposants et conducteurs

3.1 Si R est une représentation linéaire de WF, on peut définir, à

l'aide de la distribution de Herbrand [We 1, App. I] l'exposant de son
conducteur d'Artin, appelé plus brièvement exposant de R, et noté a (R).
Si R se factorise à travers le groupe fini G Gai {KlF), c'est aussi l'exposant,

défini dans [Se, p. 107], de la représentation de G que R détermine.
Cet exposant ne dépend que de la restriction de R à IF. Pour une représentation

non-ramifiée p, on a a (p) 0, et si p commute à R, on a a (R)
a (R. p).

3.2 L'on peut définir, comme dans [Se, p. 83, Rem. 1], les sous-groupes
WF de WF pour u e R, u > — 1 : ce sont les sous-groupes de ramification
de WF en numérotation supérieure. Si G — Gal (K/F) est un quotient fini
WF/WK de WF, on a Gu WK WF/WK. On a WFl WF, le groupe W°F

est le groupe d'inertie IF et le groupe d'inertie sauvage PF est la fermeture
de l'union des Wß pour s > 0.

Si K est une extension galoisienne finie de F et G son groupe de Galois

sur F, nous poserons

a (K/F) sup {u I GM^ 1} et ß (K/F) sup {?; | Gv A 1}

On a

ß(K/F)ij/K/F (a (KjF)) et a

où (pK/F et 1 l/K/Fsontles fonctions de Herbrand [Se, p. 80].
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3.3 Soit R une représentation linéaire de WF. Si R est triviale, posons

a (R) 0. Sinon, nous noterons a (R) le plus grand indice u tel que l'image
de R (WUF) soit non-triviale. Un tel a (R) est bien défini: si R est non-

ramifiée, on a R{WF) # 1 et R(JVF) 1 pour s > — 1, d'où a (R)
—1. Si R est ramifiée, prenons une représentation non ramifiée p,

commutant à R, et telle que R p soit galoisienne. Soit K le corps fixé

par le noyau de R p. Alors a (R p) existe et vaut a (.K/F). Mais il est

clair que pour u> — 1, on a R p (WF) R (JVF). Ainsi a (R) est

défini et vaut a (K/F).

3.4 II est bien connu que si % est un caractère de WF, alors on a

a (X) a(x) + 1 [Se, p. 109, prop. 5].

Nous voulons généraliser cette formule. Nous dirons qu'une représentation

linéaire R de WF possède la propriété A si la restriction de R à WaF R)

est sans point fixe non-trivial.
Il est clair qu'une représentation irréductible R vérifie la propriété A:

en effet, comme WF(R) est invariant dans WF, la restriction de R à fVF(R) a

des composantes irréductibles conjuguées entre elles; cette restriction étant
non-triviale, aucune composante ne peut être triviale.

3.5 La proposition suivante est une traduction de [Se, p. 108, Cor. 1]:

Proposition 3.5. Soit R une représentation linéaire de WF se
factorisant par le groupe fini G Gai {KlF). Alors on a

l 00

a ^ YF~\ £ I G"Icodim (U") »

I

o
I v =0

> G roù V v désigne l'espace des points fixes par le groupe Gv.

Théorème 3.5. Soit R une représentation linéaire de degré n de WF,
vérifiant la propriété A. Alors on a a {R) n (a (R)+ 1). 1)

Démonstration. C'est clair si R est non-ramifiée. Si R est ramifiée,
on peut, par le théorème 2.2, se ramener à R de type galoisien se factorisant
par le groupe fini G Gai (K/F).

Alors
1 ß

a R)Tr~\£C0dim <TG") • I I
»

I I v 0

b Cette formule avait été signalée, sans démonstration, dans une prépublication de
R. Howe.

L'Enseignement mathém., t. XXVI, fasc. 1-2. 11



— 162 —

où ß ß (.K\F). Mais on a G* WF(R) WKjWK et R vérifie la propriété
G GA. Par suite on a dim V ß 0 et aussi dim V v 0 pour v < ß. On a donc

«(*)=«i n (l + £ jLj) n (1 + a(tf/F))
v 0 | j \ v=l I I /

d'où a OR) >?(l+a(R)). C.Q.F.D.

3.6 Corollaire 1. Soient R et S deux représentations linéaires de

W de degrés n et m respectivement. Supposons que R, S et R ® S

vérifient la propriété A. Alors on a a (R®S) < sup (ma (R), na (61))

avec égalité si ma (R) ^ na (S).

Rappelons qu'une représentation linéaire est dite primordiale si l'on
ne peut abaisser son exposant en la tordant par un caractère. Le corollaire 2

implique immédiatement le théorème 1.5.

Corollaire 2. Soit R une représentation linéaire de WF, primordiale,
de degré n, et vérifiant la propriété A. Soit % un caractère de WF. Alors
on a a (R ® X) sup (a (R), na (%)).

3.7 Démonstration des corollaires. Le théorème 3.5 nous permet
d'écrire

a (R) a (S)
a (R) + 1 et a (S) + 1

n m

Mais il est clair que l'on a cc(R®S) < sup (a (R), a (5)), avec l'égalité
si a (R) ^ a (S). On en déduit le corollaire 1. Prenant S on obtient
le corollaire 2, puisque, par hypothèse, on a toujours a(R®x) (R).
C.Q.F.D.

Une conséquence immédiate du corollaire 2 est la remarque suivante:

Remarque 3.7. Soit R une représentation linéaire de WFi irréductible
et de degré n. Si a (R) n'est pas multiple de n, R est primordiale.

4. Caractères centriques

4.1 Rappel et notations. Si L est une extension finie de F, nous noterons

%L : Wl-+Lx l'application de réciprocité définie par la théorie du

corps de classes local. On sait qu'elle donne une bijection entre les caractères

de Lx et ceux de WL, par la formule x Xotl•
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