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2. RELEVEMENTS

2.1 Le groupe de Weil W est défini comme le sous-groupe du groupe
de Galois Gy = Gal (F/F) formé des éléments qui agissent sur le corps
résiduel k de F comme une puissance entiére de la transformation de Fro-
benius. Le groupe d’inertie /5, formé des éléments qui agissent trivialement
sur k, est un sous-groupe ouvert de Wp. Il a la topologie induite par celle
de Gp. L’inclusion ¢ de Wj dans G est ainsi continue et son image est
dense. Toute représentation de Gy définit donc, par composition avec @,
une représentation de W, que nous dirons de type galoisien. 11 est facile de
voir qu’une représentation de Wy est de type galoisien si et seulement si
son image est finie.

2.2 Rappelons que n désigne la projection de GL (n, C) sur PGL (n, C).
Nous appellerons non-ramifiée une représentation de Wy qui est triviale sur
Ir. Fixons un élément Fr de W induisant la transformation de Frobenius
sur k. Son image dans W/l ~ Z est alors génératrice. Une représentation
non-ramifiée de W est déterminée par la donnée de I'image de Fr.

Soient p et p’ deux représentations de Wy a valeurs dans GL (n, C) ou
PGL (n, C). Si les éléments de p (W) commutent a ceux de p’ (W) (on
dit, par abus de langage, que p et p’ commutent), I’on définit le produit

p.p parp.p'(9) = p(g)p' (g) = p' (9) p(g) pour g € Wrp.

THEOREME 2.2. Soit r une représentation projective de degré n de Wr.
Posons H = n~ 1 (r (Wg)). Alors il existe une représentation non ramifiée
p: Wiy — GL (n, C), telle que les éléments de p (W) commutent a ceux
de H et que la représentation r.(m Op) soit de type galoisien.

2.3 COROLLAIRE 1. Toute représentation projective irréductible de Wy
est de type galoisien.

COROLLAIRE 2. Soit R une représentation linéaire de degré n de Wr.
Alors il existe une représentation non-ramifiée & : Wy — GL (n, C) com-
mutant @ R, et telle que R .o soit de type galoisien.

COROLLAIRE 3. Toute représentation linéaire irréductible R de Wy
s’écrit sous la forme R = S ® y ou S est de type galoisien et y un carac-
tere non-ramifié.

2.4 Démontrons le corollaire 1: soient r la représentation projective
considérée et p la représentation non-ramifiée donnée par le théoréme 2.2.
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Comme r est irréductible H est un sous-groupe irréductible de GL (n, C).
Mais les éléments de p (W) commutent & ceux de H. Par suite p (Wp)
est formé de matrices scalaires et m op est triviale. Donc r est bien de type
galoisien.

Démontrons les corollaires 2 et 3. Soit R : Wy = GL (n, C) une repre-
sentation linéaire. Appliquons le théoréme 2.2 & » = n o R. On obtient une
représentation non-ramifiée p, commutant a R, et telle que r . (m0p) soit
de type galoisien. Alors, il existe un entier m tel que r. (mo p) (Fr™) soit
trivial dans PGL (n, C); la matrice R . p (Fr™) est scalaire. Or il existe un
caractére non ramifié y de Wy tel que R.p (Fr™) = x (Fr™) . 1,, ou 1,
désigne la matrice unité d’ordre n. Ecrivant S = R.(p®x~ '), on a
S (Fr™) = 1,, et S est de type galoisien, ¢ = p ® x~ ' étant une représen-
tation non-ramifiée commutant a R. On a donc démontré le corollaire 2.
Si R est irréductible, o (W5) est formé de matrices scalaires, donc ¢ définit
un caractére non-ramifié y. On a alors R = S ® y, avec y non ramifié,
d’olt le corollaire 3.

2.5 La démonstration du théoréme 2.2 utilise un raffinement du rai-
sonnement de [De, p. 542].

Soit r une représentation projective de degré n de Wr. Comme r est
continue, elle est triviale sur un sous-groupe ouvert de I,. Posons
J = Ker (r| Iy) = Ker (r) n I: ainsi J est invariant dans W5. L’on fait
agir Wy par conjugaison sur Ip/J. Comme [I;/J est fini, une puissance de
Fr, disons Fr™, agit trivialement. Soit x € W5. On voit que r (Fr™) commute
a r (x). Soient ¢ et y des €éléments de GL (n, C) tels que 7 (¢) = r (Fr) et
n(y) = r(x). On a ainsi @™y = sye™, ou s est un nombre complexe
non-nul. Prenant le déterminant des deux membres, on obtient s" = 1

et par suite ¢™" commute a y. On en conclut que ¢™ commute a tous les
éléments de H = n~ ' (r (Wp)).

2.6 Nous laissons au lecteur le soin de montrer qu’il existe un poly-
noéme Q e C [T] tel que:

Q(T)™ =T modulo P(T),

ou P désigne le polyndme minimal de @™,
Posons ¢, = Q0 (¢™). On obtient ainsi une matrice ¢,, commutant

a tous les éléments de H et telle que )" = ¢™. Définissons la représen-
tation non-ramifiée p par:

o(Fr) = o',
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Evidemment p (Wy) commute a H et 'on a r.(nop) (Fr™) = n (o)™
n(p,)” ™ = 1,, donc r. (nop) est de type galoisien. C.Q.F.D.

2.7 THEOREME 2.7. Toute représentation projective de Gy (resp. Wy)
posséde un relevement.

Ce fait est bien connu pour Gy [We 2, p. 2]. Ainsi une représentation
projective de type galoisien de W a un relévement de type galoisien.

Pour le cas de Wy (c’est le théoréme 1.4 de I’introduction), ’on utilise
le théoréme 2.2. On a donc une représentation non-ramifiée p de W,
les €léments de p (W) commutant & ceux de H, et telle que r. (m 0p)
soit de type galoisien. Il existe un relévement R de r . (n op). Mais alors p
commute a R, puisque les éléments de p (W) commutent entre eux et a
ceux de H. La représentation R.p~ ! est un relévement de r. C.Q.F.D

3. EXPOSANTS ET CONDUCTEURS

3.1 Si R est une représentation linéaire de Wy, on peut définir, a
laide de la distribution de Herbrand [We 1, App. I] I’exposant de son
conducteur d’Artin, appelé plus brievement exposant de R, et noté a (R).
Si R se factorise a travers le groupe fini G = Gal (K/F), c’est aussi ’expo-
sant, défini dans [Se, p. 107], de la représentation de G que R détermine.
Cet exposant ne dépend que de la restriction de R a I,. Pour une représen-
tation non-ramifiée p, on a a(p) = 0, et si p commute a R, on a a(R)

= a(R.p).

3.2 L’on peut définir, comme dans [Se, p. 83, Rem. 1], les sous-groupes
Wi de Wp pour ue R, u > —1: ce sont les sous-groupes de ramification
de Wy en numérotation supérieure. Si G = Gal (K/F) est un quotient fini
We/Wy de Wy, on a G* = Wy Wp/Wg. On a Wit = W, le groupe W3
est le groupe d’inertie I, et le groupe d’inertie sauvage Py est la fermeture

de 'union des Wy pour ¢ > O.
Si K est une extension galoisienne finie de F et G son groupe de Galois

sur F, nous poserons
a(K/F) = sup {u|G*#1} et PB(K/F)=sup{v|G,#1}.

On a
B(K[F) = 'ﬁK/F(O‘ (K/F)) et «(K[F) = Ok /r (ﬁ (K/F))

ol @k r et Yg r sont les fonctions de Herbrand [Se, p. 80].
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