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REPRESENTATIONS DU GROUPE DE WEIL
D’UN CORPS LOCAL

par Guy HENNIART

0. RESUME

Soient F un corps local non archimédien, F une cloture séparable
algébrique de F, et W le groupe de Weil de F sur F. Soit r une représenta-
tion projective de Wy Nous montrons l’existence de représentations
linéaires relevant r et nous étudions leurs propriétés. Si r est primitive,
nous déterminons une borne inférieure pour l’exposant du conducteur
d’Artin de ces relévements.

1. INTRODUCTION

1.1 Soit F un corps local non archimédien, & corps résiduel fini de
caractéristique p. Soient F une cloture séparable algébrique de F, et Wp
le groupe de Weil de F sur F [We 1, app. II].

La théorie du corps de classes local donne une bijection entre les carac-
téres de Wy, i.e. ses représentations continues de degré 1, et les caractéres
du groupe multiplicatif F* de F.

1.2 R. P. Langlands conjecture qu’il y a une correspondance analogue
entre les (classes d’isomorphismes de) représentations irréductibles de W5
dans GL (n, C) et les (classes d’isomorphisme de) représentations super-
cuspidales de GL (n, F) '). Cette correspondance, entre autres propriétés,
doit conserver les facteurs L et ¢, ainsi que les conducteurs.

De méme, il existerait un tel lien entre les représentations irréductibles
de Wy dans SL (n, C) (resp. PGL (n, C)), et les représentations super-
cuspidales de PGL (n, F) (resp. SL (n, F)) [Bo].

1.3 En fait cette conjecture n’est établie que pour n = 2, [JL, Ku, Tu,

Yo, Ca, Ge]. On ne posséde que des renseignements partiels pour n > 2
[Co].

1) Ici, comme dans toute la suite, par représentation nous entendons représentation
continue.
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1.4 Nous étudierons ici les représentations de degré n de W (le versant
dit « galoisien » des conjectures de Landglands) en suivant pour cela la
méthode d’A. Weil [We 2].

Elle consiste a déterminer d’abord les représentations projectives
r: Wg— PGL (n, C), puis a trouver les représentations linéaires R : Wp
— GL (n, C) relevant r, c’est-a-dire telles que ’on ait # oR = r, ou 7 est
la projection de GL (n, C) sur PGL (n, C)

We
R
r
< !
GL (n, C) L, PGL(n,C)

Nous démontrerons, au chapitre 2, le théoréme suivant:

THEOREME 1.4. Toute représentation projective de Wy posséde un
relévement.

Ce théoréme ¢était déja connu pour les représentations projectives
irréductibles de Wy, [We 2, p. 3]. En fait, nous pourrions méme obtenir des
précisions sur le déterminant des relévements [He, ch. 5].

1.5 Les différents relévements d’une représentation projective donnée r
différent par torsion par un caractére. Notre but est d’étudier les conducteurs
d’Artin de ces relévements.

Si R est une représentation linéaire de Wp, nous noterons a (R) I’expo-
sant de son conducteur d’Artin, plus briévement appelé exposant de R;
le conducteur d’Artin de R est alors ¢ (R) = p&®, ot py est I'idéal maximal
des entiers oy de F.

Une représentation linéaire est dite primordiale si ’'on ne peut abaisser

son exposant par torsion par un caractere.

THEOREME 1.5. Soit R une représentation linéaire de Wy, irréductible,
primordiale et de degré n. Soit y un caractére de Wy. Alors on a

a(R®y) = sup (a(R),na(y)).

La démonstration de ce théoréme utilise la formule a (R) = n (x (R)+1),
valable pour une représentation irréductible et de degré n, ou « (R) désigne
le plus grand indice u tel que R soit non-triviale sur W, le sous-groupe
de ramification de W d’indice ¥ en numérotation supérieure.
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1.6 Une représentation projective irréductible de Wy est de type
galoisien, i.e. d’image finie. Nous sommes plus particuliérement intéresse€s
par celles dont, en outre, aucun relévement n’est une représentation induite:
on les appelle primitives. Ces représentations ont été étudiées par H. Koch
[Ko]. En particulier, I’on sait que leur degré est une puissance de la carac-
téristique résiduelle p de F. On appellera corps centrique d’une représentation
projective r de type galoisien, I’extension K de F fixée par le noyau de r:
elle est finie et galoisienne sur F.

Soit F, 'extension modérément ramifiée de F, incluse dans K, et maxi-
male pour ces propri¢tés. Nous noterons r; la restriction de r a Wr,. Si
r est primitive, r, est irréductible [Ko].

1.7 Nous appellerons exposant d’une représentation projective r
et nous noterons a (r) le minimum des exposants des relévements de r.

THEOREME 1.7. Si r est une représentation projective primitive de
degré p* de Wy, les exposants de r et de r, vérifient 1’égalité suivante :

ea(r) = (e—=Dp* +a(ry),

ou e estl’indice de ramification de F, sur F.

Ce théoréme est la généralisation de [Bu, Claim 1’, p. 29], qui traitait le
cas d = 1. Ce résultat et le suivant doivent beaucoup a un travail effectué
en commun avec J. Buhler au cours de I’été 1977. Les démonstrations
s’appuient essentiellement sur les méthodes et les résultats de [Bu]:

TuEOREME 1.8.  Soit o = sup {u|r(W%) # 1}. Alors [’exposant
a(r) de r vérifie l'inégalité suivante :

a(r)>p* +(@P'+Da.

Pour d = 1, on a méme I’égalité a (r) = p + (p+1) . Ce résultat est di
a J. Buhler [Bu, Thm. 4, p. 25].

Y a-t-1l égalité dans le théoréme précédent lorsque d > 1 ? Cette question
n’est pas résolue a présent.

1.9 Cet article est une version condensée d’une thése de 3e cycle sou-
tenue a Orsay en juin 1978 [He]. Cette thése a été effectuée sous la direction

de M. Cartier. Qu’il trouve ici exprimée ma reconnaissance pour l’aide
qu’il m’a apportée.
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