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REPRÉSENTATIONS DU GROUPE DE WEIL
D'UN CORPS LOCAL

par Guy Henniart

0. Résumé

Soient F un corps local non archimédien, F une clôture séparable

algébrique de F, et WF le groupe de Weil de F sur F. Soit r une représentation

projective de WF. Nous montrons l'existence de représentations
linéaires relevant r et nous étudions leurs propriétés. Si r est primitive,
nous déterminons une borne inférieure pour l'exposant du conducteur

d'Artin de ces relèvements.

1. Introduction

1.1 Soit F un corps local non archimédien, à corps résiduel fini de

caractéristique p. Soient F une clôture séparable algébrique de F, et WF

le groupe de Weil de F sur F [We 1, app. II].
La théorie du corps de classes local donne une bijection entre les caractères

de WF, i.e. ses représentations continues de degré 1, et les caractères
du groupe multiplicatif Fx de F.

1.2 R. P. Langlands conjecture qu'il y a une correspondance analogue
entre les (classes d'isomorphismes de) représentations irréductibles de WF
dans GL (,n, C) et les (classes d'isomorphisme de) représentations super-
cuspidales de GL («, F) *). Cette correspondance, entre autres propriétés,
doit conserver les facteurs L et s, ainsi que les conducteurs.

De même, il existerait un tel lien entre les représentations irréductibles
de WF dans SL (in, C) (resp. PGL (n, C)), et les représentations super-
cuspidales de PGL (n, F) (resp. SL (n, F)) [Bo].

1.3 En fait cette conjecture n'est établie que pour n 2, [JL, Ku, Tu,
Yo, Ca, Ge]. On ne possède que des renseignements partiels pour n > 2

[Co].

h Ici, comme dans toute la suite, par représentation nous entendons représentation
continue.
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1.4 Nous étudierons ici les représentations de degré n de WF (le versant
dit « galoisien » des conjectures de Landglands) en suivant pour cela la
méthode d'A. Weil [We 2].

Elle consiste à déterminer d'abord les représentations projectives
r : WF —> PGL (n, C), puis à trouver les représentations linéaires R : WF

-> GL (n, C) relevant r, c'est-à-dire telles que l'on ait n oR r, où n est

la projection de GL {n, C) sur PGL (;n, C)

GL (n, C) > PGL (n, C)

Nous démontrerons, au chapitre 2, le théorème suivant:

Théorème 1.4. Toute représentation projective de WF possède un
relèvement.

Ce théorème était déjà connu pour les représentations projectives
irréductibles de WF [We 2, p. 3]. En fait, nous pourrions même obtenir des

précisions sur le déterminant des relèvements [He, ch. 5].

1.5 Les différents relèvements d'une représentation projective donnée r
diffèrent par torsion par un caractère. Notre but est d'étudier les conducteurs
d'Artin de ces relèvements.

Si R est une représentation linéaire de WF, nous noterons a (R) l'exposant

de son conducteur d'Artin, plus brièvement appelé exposant de R;
le conducteur d'Artin de R est alors c (R) yaFR\ où pF est l'idéal maximal
des entiers oF de F.

Une représentation linéaire est dite primordiale si l'on ne peut abaisser

son exposant par torsion par un caractère.

Théorème 1.5. Soit R une représentation linéaire de WF, irréductible,
primordiale et de degré n. Soit % un caractère de WF. Alors on a

a (R®x) sup (a (R), na (%))

La démonstration de ce théorème utilise la formule a (R) n (a (R) + 1),

valable pour une représentation irréductible et de degré n, où a (R) désigne
le plus grand indice u tel que R soit non-triviale sur WF, le sous-groupe
de ramification de WF d'indice u en numérotation supérieure.
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1.6 Une représentation projective irréductible de WF est de type

galoisien, i.e. d'image finie. Nous sommes plus particulièrement intéressés

par celles dont, en outre, aucun relèvement n'est une représentation induite :

on les appelle primitives. Ces représentations ont été étudiées par H. Koch
[Ko]. En particulier, l'on sait que leur degré est une puissance de la
caractéristique résiduelle p de F. On appellera corps centrique d'une représentation
projective r de type galoisien, l'extension K de F fixée par le noyau de r :

elle est finie et galoisienne sur F.

Soit Fx l'extension modérément ramifiée de F, incluse dans K, et maximale

pour ces propriétés. Nous noterons r1 la restriction de r à Wfv Si

r est primitive, r1 est irréductible [Ko].

1.7 Nous appellerons exposant d'une représentation projective r
et nous noterons a (r) le minimum des exposants des relèvements de r.

Théorème 1.7. Si r est une représentation projective primitive de

degré pd de WF, les exposants de r et de rx vérifient l'égalité suivante :

e a (r) (e - 1) pd + a (rx)

où e est l'indice de ramification de F1 sur F.
Ce théorème est la généralisation de [Bu, Claim V, p. 29], qui traitait le

cas d 1. Ce résultat et le suivant doivent beaucoup à un travail effectué
en commun avec J. Buhler au cours de l'été 1977. Les démonstrations
s'appuient essentiellement sur les méthodes et les résultats de [Bu] :

Théorème 1.8. Soit a sup { u | r (WF) 1 }. Alors l'exposant
a (r) de r vérifie l'inégalité suivante :

a (r) > pd + (pd + 1) a

Pour d 1, on a même l'égalité a (r) p + (p+ 1) a. Ce résultat est dû
à J. Buhler [Bu, Thm. 4, p. 25].

Y a-t-il égalité dans le théorème précédent lorsque d > 1 Cette question
n'est pas résolue à présent.

1.9 Cet article est une version condensée d'une thèse de 3e cycle
soutenue à Orsay en juin 1978 [He]. Cette thèse a été effectuée sous la direction
de M. Cartier. Qu'il trouve ici exprimée ma reconnaissance pour l'aide
qu'il m'a apportée.
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2. Relèvements

2.1 Le groupe de Weil WF est défini comme le sous-groupe du groupe
de Galois GF Gai (.F /F) formé des éléments qui agissent sur le corps
résiduel k de F comme une puissance entière de la transformation de Fro-
benius. Le groupe d'inertie formé des éléments qui agissent trivialement
sur k, est un sous-groupe ouvert de WF. Il a la topologie induite par celle
de GF. L'inclusion cp de WF dans GF est ainsi continue et son image est

dense. Toute représentation de GF définit donc, par composition avec cp,

une représentation de WF que nous dirons de type galoisien. Il est facile de

voir qu'une représentation de WF est de type galoisien si et seulement si

son image est finie.

2.2 Rappelons que n désigne la projection de GL (n, C) sur PGL (n, C).
Nous appellerons non-ramifiée une représentation de WF qui est triviale sur

IF. Fixons un élément Fr de WF induisant la transformation de Frobenius

sur k. Son image dans WF/IF ~ Z est alors génératrice. Une représentation
non-ramifiée de WF est déterminée par la donnée de l'image de Fr.

Soient p et p' deux représentations de WF à valeurs dans GL {n, C) ou
PGL (n, C). Si les éléments de p (fVF) commutent à ceux de p' (WF) (on
dit, par abus de langage, que p et p' commutent), l'on définit le produit
p p'par p.p' g)p (g) p' (g) p' (g) p (g) pour g e

Théorème 2.2. Soit r une représentation projective de degré n de WF.

Posons H 7r_1 (r (WFj). Alors il existe une représentation non ramifiée

p : WF -> GL (n, C), telle que les éléments de p WF) commutent à ceux
de H et que la représentation r (n op) soit de type galoisien.

2.3 Corollaire 1. Toute représentation projective irréductible de WF

est de type galoisien.

Corollaire 2. Soit R une représentation linéaire de degré n de WF.

Alors il existe une représentation non-ramifiée o : WF -> GL (;n, C)
commutant à R, et telle que R a soit de type galoisien.

Corollaire 3. Toute représentation linéaire irréductible R de WF

s'écrit sous la forme R S ® x °ù S est de type galoisien et x un caractère

non-ramifié.

2.4 Démontrons le corollaire 1 : soient r la représentation projective
considérée et p la représentation non-ramifiée donnée par le théorème 2.2.
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Comme r est irréductible H est un sous-groupe irréductible de GL {n, C).

Mais les éléments de p (WF) commutent à ceux de H. Par suite p(WF)
est formé de matrices scalaires et n op est triviale. Donc r est bien de type

galoisien.

Démontrons les corollaires 2 et 3. Soit R : WF -» GL (n, C) une
représentation linéaire. Appliquons le théorème 2.2 à r n o R. On obtient une

représentation non-ramifiée p, commutant à R, et telle que r .{no p) soit

de type galoisien. Alors, il existe un entier m tel que r .{no p) {Frm) soit

trivial dans PGL {in, C); la matrice R p {.Frm) est scalaire. Or il existe un
caractère non ramifié x de WF tel que R p {Frm) % {.Frm) 1„, où \n

désigne la matrice unité d'ordre n. Ecrivant S R (p®/-1), on a

S{Frm) 1„, et S est de type galoisien, o p ® x1 étant une représentation

non-ramifiée commutant h R. On a donc démontré le corollaire 2.

Si R est irréductible, a {WF) est formé de matrices scalaires, donc g définit

un caractère non-ramifié x• On a alors R S ® x, avec x non ramifié,
d'où le corollaire 3.

2.5 La démonstration du théorème 2.2 utilise un raffinement du
raisonnement de [De, p. 542].

Soit r une représentation projective de degré n de WF. Comme r est

continue, elle est triviale sur un sous-groupe ouvert de IF. Posons

J Ker {r | IF) Ker (r) n IF : ainsi J est invariant dans WF. L'on fait
agir WF par conjugaison sur IF/J. Comme IF/J est fini, une puissance de

Fr, disons Frm, agit trivialement. Soit x e WF. On voit que r {Frm) commute
à r (x). Soient ç et y des éléments de GL (;n, C) tels que n {cp) r {Fr) et

n{y) r (x). On a ainsi cpmy sycpm, où ^ est un nombre complexe
non-nul. Prenant le déterminant des deux membres, on obtient sn 1

et par suite (pmn commute à y. On en conclut que cpmn commute à tous les
éléments de H n_1 (r {tVF)).

2.6 Nous laissons au lecteur le soin de montrer qu'il existe un
polynôme Q e C [T] tel que :

Q{T)mn EE T modulo P(T),
où P désigne le polynôme minimal de cpmn.

Posons (p0 Q {(pmn). On obtient ainsi une matrice q>09 commutant
à tous les éléments de H et telle que <p cpmn. Définissons la représentation

non-ramifiée p par:
a(Fr) cp-1
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Evidemment p (WF) commute à ET et l'on a r .(nop) (Frmn) n (cp)mn

71 (<Po)~mn I«» donc r (710p) est de type galoisien. C.Q.F.D.

2.7 Théorème 2.7. Tbwte représentation projective de GF (resp. WF)
possède un relèvement.

Ce fait est bien connu pour GF [We 2, p. 2]. Ainsi une représentation
projective de type galoisien de WF a un relèvement de type galoisien.

Pour le cas de WF (c'est le théorème 1.4 de l'introduction), l'on utilise
le théorème 2.2. On a donc une représentation non-ramifiée p de WF,
les éléments de p (WF) commutant à ceux de H, et telle que r (n op)
soit de type galoisien. Il existe un relèvement R de r (n op). Mais alors p
commute à R, puisque les éléments de p (fLF) commutent entre eux et à

ceux de H. La représentation R.p-1 est un relèvement de r. C.Q.F.D

3. Exposants et conducteurs

3.1 Si R est une représentation linéaire de WF, on peut définir, à

l'aide de la distribution de Herbrand [We 1, App. I] l'exposant de son
conducteur d'Artin, appelé plus brièvement exposant de R, et noté a (R).
Si R se factorise à travers le groupe fini G Gai {KlF), c'est aussi l'exposant,

défini dans [Se, p. 107], de la représentation de G que R détermine.
Cet exposant ne dépend que de la restriction de R à IF. Pour une représentation

non-ramifiée p, on a a (p) 0, et si p commute à R, on a a (R)
a (R. p).

3.2 L'on peut définir, comme dans [Se, p. 83, Rem. 1], les sous-groupes
WF de WF pour u e R, u > — 1 : ce sont les sous-groupes de ramification
de WF en numérotation supérieure. Si G — Gal (K/F) est un quotient fini
WF/WK de WF, on a Gu WK WF/WK. On a WFl WF, le groupe W°F

est le groupe d'inertie IF et le groupe d'inertie sauvage PF est la fermeture
de l'union des Wß pour s > 0.

Si K est une extension galoisienne finie de F et G son groupe de Galois

sur F, nous poserons

a (K/F) sup {u I GM^ 1} et ß (K/F) sup {?; | Gv A 1}

On a

ß(K/F)ij/K/F (a (KjF)) et a

où (pK/F et 1 l/K/Fsontles fonctions de Herbrand [Se, p. 80].
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3.3 Soit R une représentation linéaire de WF. Si R est triviale, posons

a (R) 0. Sinon, nous noterons a (R) le plus grand indice u tel que l'image
de R (WUF) soit non-triviale. Un tel a (R) est bien défini: si R est non-

ramifiée, on a R{WF) # 1 et R(JVF) 1 pour s > — 1, d'où a (R)
—1. Si R est ramifiée, prenons une représentation non ramifiée p,

commutant à R, et telle que R p soit galoisienne. Soit K le corps fixé

par le noyau de R p. Alors a (R p) existe et vaut a (.K/F). Mais il est

clair que pour u> — 1, on a R p (WF) R (JVF). Ainsi a (R) est

défini et vaut a (K/F).

3.4 II est bien connu que si % est un caractère de WF, alors on a

a (X) a(x) + 1 [Se, p. 109, prop. 5].

Nous voulons généraliser cette formule. Nous dirons qu'une représentation

linéaire R de WF possède la propriété A si la restriction de R à WaF R)

est sans point fixe non-trivial.
Il est clair qu'une représentation irréductible R vérifie la propriété A:

en effet, comme WF(R) est invariant dans WF, la restriction de R à fVF(R) a

des composantes irréductibles conjuguées entre elles; cette restriction étant
non-triviale, aucune composante ne peut être triviale.

3.5 La proposition suivante est une traduction de [Se, p. 108, Cor. 1]:

Proposition 3.5. Soit R une représentation linéaire de WF se
factorisant par le groupe fini G Gai {KlF). Alors on a

l 00

a ^ YF~\ £ I G"Icodim (U") »

I

o
I v =0

> G roù V v désigne l'espace des points fixes par le groupe Gv.

Théorème 3.5. Soit R une représentation linéaire de degré n de WF,
vérifiant la propriété A. Alors on a a {R) n (a (R)+ 1). 1)

Démonstration. C'est clair si R est non-ramifiée. Si R est ramifiée,
on peut, par le théorème 2.2, se ramener à R de type galoisien se factorisant
par le groupe fini G Gai (K/F).

Alors
1 ß

a R)Tr~\£C0dim <TG") • I I
»

I I v 0

b Cette formule avait été signalée, sans démonstration, dans une prépublication de
R. Howe.

L'Enseignement mathém., t. XXVI, fasc. 1-2. 11
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où ß ß (.K\F). Mais on a G* WF(R) WKjWK et R vérifie la propriété
G GA. Par suite on a dim V ß 0 et aussi dim V v 0 pour v < ß. On a donc

«(*)=«i n (l + £ jLj) n (1 + a(tf/F))
v 0 | j \ v=l I I /

d'où a OR) >?(l+a(R)). C.Q.F.D.

3.6 Corollaire 1. Soient R et S deux représentations linéaires de

W de degrés n et m respectivement. Supposons que R, S et R ® S

vérifient la propriété A. Alors on a a (R®S) < sup (ma (R), na (61))

avec égalité si ma (R) ^ na (S).

Rappelons qu'une représentation linéaire est dite primordiale si l'on
ne peut abaisser son exposant en la tordant par un caractère. Le corollaire 2

implique immédiatement le théorème 1.5.

Corollaire 2. Soit R une représentation linéaire de WF, primordiale,
de degré n, et vérifiant la propriété A. Soit % un caractère de WF. Alors
on a a (R ® X) sup (a (R), na (%)).

3.7 Démonstration des corollaires. Le théorème 3.5 nous permet
d'écrire

a (R) a (S)
a (R) + 1 et a (S) + 1

n m

Mais il est clair que l'on a cc(R®S) < sup (a (R), a (5)), avec l'égalité
si a (R) ^ a (S). On en déduit le corollaire 1. Prenant S on obtient
le corollaire 2, puisque, par hypothèse, on a toujours a(R®x) (R).
C.Q.F.D.

Une conséquence immédiate du corollaire 2 est la remarque suivante:

Remarque 3.7. Soit R une représentation linéaire de WFi irréductible
et de degré n. Si a (R) n'est pas multiple de n, R est primordiale.

4. Caractères centriques

4.1 Rappel et notations. Si L est une extension finie de F, nous noterons

%L : Wl-+Lx l'application de réciprocité définie par la théorie du

corps de classes local. On sait qu'elle donne une bijection entre les caractères

de Lx et ceux de WL, par la formule x Xotl•
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On a également tl(Wul) U[wl pour u> - 1 où \u 1 désigne le

plus petit entier supérieur ou égal à u, et £7 est le groupe des unités de

l'anneau des entiers oL de L, congrues à 1 modulo la puissance me de

l'idéal maximal pL.

4.2 toute la suite, r désignera une représentation projective de

degré /2 de fLF, type galoisien. On notera K le corps centrique de r (c'est
le corps fixé par Ker (r)), et G le groupe Gal (K/F).

Nous étudierons les relèvements R de r. On définit le caractère centrique

XR de R, qui est un caractère deKx, par la formule R (g) Xr° tk (q) •

pour g e WK, où ln désigne la matrice d'unité d'ordre n.

Les relèvements de r diffèrent par un caractère de WF. Si l'on tord R

par a o tf, où a est un caractère de F x, le caractère %R est tordu par a o NKjF,
où Nk/f est la norme de Kx à Fx. Par suite, r détermine la restriction yr
de xR à KN, noyau de NK/F.

Comme Xr esl invariant par G, est trivial sur K1, le sous-groupe de

Kx engendré par les éléments xs_1, xeKx, s e G. Donc Xr définit un
caractère de H'1 (G, Kx) KNjK1. On peut donner une formule coho-

mologique pour xr et prouver la proposition suivante [Bu, Th. 1] ou [He,
chap. 6]:

Proposition 4.2. Un caractère x de Kx est le caractère centrique
d'un relèvement de r si et seulement s'il prolonge xr-

4.3 Nous noterons a(j) l'exposant du caractère x de Kx, à savoir le
plus petit entier m tel que x s°it trivial sur UR. On a a (x) a (%otk).
Nous notons e (K/F) l'indice de ramification de K sur F', et d (K/F) l'exposant
différental de cette extension.

Théorème 4.3. Soit R un relèvement de r, tel que l'image par R
de WF(RJnWK ne laisse fixe aucun élément non nul de Cn. Alors on a:

e(K/F) a(R) n(d(K/F) + a(xid)
et

a (Xr) > ß (K/F) + 1.

Cette dernière inégalité est stricte si WK contient J¥F(R).

L'égalité concernant a (R) découle immédiatement de [Bu, prop. 2,
p. 25]. Pour une généralisation, voir [He, chap. 7].

4.4 L'inégalité à démontrer s'écrit encore

e (K/F) a(R)>n (d (K/F) + ß (K/F) + 1)
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Par hypothèse, la restriction de R à JVF(R) n WK est sans point fixe non-
trivial. Par suite, R vérifie la propriété A, et, utilisant le théorème 3.5,

l'on voit qu'il faut démontrer:

e (K/F) (a (R) + 1) > à (K/F) + ß (K/F) + 1

Lemme 4.4. On a

e (K/F) (a (K/F) + 1) à (K/F) + ß (K/F) + 1

Démonstration. Rappelons que G =* Gai (K/F). Par [Se, prop. 4,

p. 72], on a
00 ß (K/F)

d (K/F)X (|G,| - 1) X (|G,| - 1)
i=0 1=0

d'où
P(K/F) / ß(K/F) I

G
I x

d{KjF) + ß (K/F)+ 1 X |G,| |G#| 1+ X t^Ti 0 \ i— 1 I G0 I /
| G0 | (1 + <pK/F(ßK/F)))e (K/F) (a (K/F) + 1) C.Q.F.D.

4.5 II suffit donc de démontrer l'inégalité a (R) > a (K/F), qui est

claire puisque la restriction de r à Wp(K/F), donc aussi celle de R, est non-
triviale. De plus, si l'on a Wp(R) a WK, on a WpiR) ^ WapK/F) d'où

a (R) > a (K/F) et l'inégalité est stricte. C.Q.F.D.
La remarque 1 qui suit [Bu, prop. 2, p. 25] donne aussitôt le corollaire

suivant au théorème 4.3:

Corollaire. Si la restriction de r à PF est irréductible, on a

e (K/F) a (R) n(d(K/F) +a(jR))
et

a (Xr) > ß (K/F) + 1.

5. Représentations primitives

5.1 Nous conservons les hypothèses et notations précédentes. Ainsi r
est une représentation projective de WF, de type galoisien et de degré n.

On notera F1 la plus grande extension modérément ramifiée de F contenue
dans le corps centrique K de r, et r± la restriction de r à WFy Le groupe
Gt Gai (.K/Fi) est le sous-groupe de ramification sauvage de

G Gai (K/F).



— 165 —

Nous nous intéressons aux représentations r vérifiant:

1) n > 1;

2) r1 est irréductible.

Ces hypothèses sont vérifiées si r est primitive non-triviale (voir [Ko],
où l'on trouvera une description des représentations projectives primitives
de WF).

5.2 Comme est irréductible, sa restriction à PF l'est aussi. On peut
donc appliquer à r et r± le corollaire au théorème 4.3.

Soit R un relèvement de r; on notera R± la restriction de R à Wfv
Soit p un relèvement de i\. On a alors

e (KlF) a (R) n(d(K/F) + a(xR))
et

e (K/F) a (p) n (d (K/F,) +a (Xp))

Remarque. De ces deux formules avec p Ru on tire (car Xr^Xrj)
e a (R) n (e - 1) + a (Rx), où e e (F1/F).

Cette dernière égalité peut être généralisée, cf. [He, chap. 7].
De plus l'on a a (xp) > ß (K/Fß) + 1.

5.3 Appelons b (r) (resp. b (rx)) le minimum des a (%R) (resp. a (%p))

quand R (resp. p) parcourt l'ensemble des relèvements de r (resp. r±).
Supposons que l'on ait b (r) b (rx). Prenons R tel que a (xR) b (r).

On a alors a (R) a(r) et a(Rß) a(rß), puisque Xrx Xr• Par suite,
on a l'égalité

e a (r) n (e - 1) + a (rx)

Le théorème suivant généralise légèrement le théorème 1.7 de
l'introduction :

Théorème 5.3. Soit r une représentation projective de WF, de degré
n > 1 et de type galoisien. Supposons que r1 soit irréductible. Alors on a
b (r) b (r j) et ea(r) n(e— 1) + a(rt), où l'on a posé e eiJFJF).

5.4 Démonstration. Il suffit de prouver la première égalité. Mais
d'après 5.2, on a b (rj) > ß (K/FJ + 1. Le théorème 5.3 est alors une
conséquence directe de la proposition suivante:
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Proposition 5.4. Soit r une représentation projective de type galoisien
de WF. Si Von a h (r j) > ß (K/Fß), alors on a b (r) b (rx).

Comme en 4.2, on définit le caractère yr de KN, noyau de la norme de

Kx à Fx. De même, on définit le caractère Xr1 de KNl, noyau de la norme
de Kx à Fx. Alors b {r) est le plus petit entier m > 0 tel que l'on puisse
étendre yr en un caractère de Kx trivial sur U Par le lemme d'extension
de [Bu, p. 14], c'est aussi le plus petit entier m > 0 tel que xr soit trivial sur
KN n UF. On a un résultat analogue pour rv

5.5 II est clair que %n est la restriction de %r à KNl. Par conséquent, on
a b (r) > b (rt). Remarquant que %r est trivial sur K1, on voit que la
proposition 5.4 découle, de façon évidente du lemme suivant:

Lemme 5.5. Soit m un entier strictement supérieur à ß (KjFß). Alors

on a
KN nul (KNl n n UmK).

Nous suivrons, pour démontrer ce lemme, l'argument de [Bu, p. 30].

Supposons m > ß(K/F1), et prenons x e KN n U%. Le lemme de [Bu,

p. 30] nous dit que H~1 (Gai (Fl/F), UfJ est nul. Il nous permet d'écrire

Nr/fi(x) El °d les Pi appartiennent à Uf[9 m' étant le
i= 1

plus petit entier supérieur ou égal à (pKjFl (m), et où les sh i 1, v,

sont des éléments de G dont les images dans Gal (FJF) engendrent ce

groupe.
Comme on a m > ß (.K/Ft), yt est la norme de K k F1 d'un élément

yt de Uk [Se, chap. V, § 6]. On peut donc écrire:

V

x x' El .VE~1 avec x'e Ul et NK/Fl(x') 1.
î=i

Par suite

xe(Ul n KNl)nU'D

et l'on a KnnUlc=(Ul n KNi) n Ul),

d'où l'égalité puisque l'inclusion dans l'autre sens est évidente. Ceci prouve
le lemme 5.5 et donc le théorème 5.3.

y
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6. Minorations d'exposants

6.1 Dans ce chapitre, nous démontrerons le théorème 1.8. Nous

conservons les notations précédentes et supposons de plus r primitive.
Il nous faut rappeler brièvement quelques résultats de [Ko].

Nous avons déjà dit que rx est irréductible; ceci entraîne que le degré n

de r est une puissance de la caractéristique résiduelle p de F, disons n p d,

d > 1. Le degré de K sur Fx est alors p2d et l'on démontre que le groupe
V Gx Gai {KjFx) est un groupe abélien d'exposant p; on peut donc

le considérer comme un espace vectoriel de dimension 2d sur le corps fini

Fp ä p éléments.

6.2 Sur cet espace vectoriel, r1 définit une forme symplectique /, à

valeurs dans p le groupe des racines de l'unité d'ordre p dans Cx, autrement

dit, / est une application bilinéaire alternée de V x V dans pp, pp étant
considéré de façon évidente comme un espace vectoriel sur Fp.

Pour définir /, prenons un relèvement R1 de r1. Si a (resp. b) est un
élément de V, prenons un représentant ä (resp. b) de a (resp. b) dans WFv
Alors Rx (äbä~1b~ *) s'écrit sous la forme / (a, b) 1

pd, où 1
pd est la matrice

d'unité d'ordre pd: en effet, r1{àbâ~1b~1) est trivial. H. Koch montre
que l'on a / (<a, b) e pp et que / est symplectique.

Le fait que r1 soit irréductible équivaut au fait que/soit non-dégénérée.
Le groupe G Gal (K/F) agit par conjugaison sur V en respectant la

forme symplectique /. Cette action se factorise en fait par Gal (FJF).
On peut exprimer le fait que r est primitive, en disant que V ne contient
aucun sous-module sur G qui soit totalement isotrope.

6.3 L'on peut facilement construire des relèvements de rY. Soit X
un sous-espace lagrangien de V, i.e. un sous-espace totalement isotrope
maximal. Soit E l'extension de F1 fixée par X. On a alors [K : E] [E : FJ

pd et il existe un caractère % de WF tel que la représentation induite de x
à WFl relève rx.

Inversement, si F est une extension de Fx telle qu'un caractère de WE
induise un relèvement de rl9 alors F est incluse dans K et X Gai (.K/E)
est un sous-espace lagrangien de V. De plus, tout relèvement de rt est
induit à partir de WE.

6.4 L'on peut donner une condition nécessaire (et suffisante si d= 1)

pour que le caractère x de WE induise à WFl un relèvement de rt.
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Posons H V/X Gai (F/i^), Soit s un élément de H. Définissons
le caractère Xs de WE de la façon suivante: si xe WE, on note nx (x) sa

projection dans X, et on appelle s un représentant quelconque de s dans V.

Alors Xs est donné par la formule suivante:

M — / (s, nx (x)) pour x e WE

On vérifie facilement que l'application s i-> Xs est un homomorphisme
de H dans le groupe des caractères de WE triviaux sur WK. De plus, comme
K est une extension abélienne de Fu H agit trivialement (par conjugaison)
sur WE/WK, et Às est invariant par H.

Remarques. 1) / étant non-dégénérée, le caractère ks est non-trivial

pour s e H, s 1.

2) E étant galoisienne sur Fu le groupe H agit sur les caractères de

WE par xs (*) X 1), ou a est un représentant dans Wf1 de l'élément
s de H.

Proposition 6.4. Soit x un sous-espace lagrangien de V fixant le

corps E. Soit x un caractère de WE. Si x Induit à Wf1 un relèvement

de rx, l'on a %s_1 ~ Xs pour tout élément s de H. Si d 1, cette

dernière condition est suffisante pour que x induise un relèvement de rx.

6.5 Démonstration. Montrons d'abord la nécessité de la condition:

posons p Ind^Ji^. Si s e H et x g We, on a

Xs'100 xicrxo'1 x'1)

où g est un représentant (quelconque) de s dans Wfv
Mais comme le commutateur gxg~1x~1 est dans WK, la matrice

p (ox g~ 1 x'1) est la matrice scalaire

xOxxff-1*-1) lpd.

Par suite, si s est l'image de g dans F, on a :

Xs-1 (X> f(s,nx(x))Xs(x) i.e. Xs'1

Si d 1, E est une extension cyclique de F, de degré premier, et il
existe un caractère Xo de WE tel que Xo induise un relèvement de On a

donc Xo-1 As. Mais il résulte de [Bu, p. 33] que le caractère x de WE

induit un relèvement de r1 si et seulement si on a xs~1 i-e- Xs~1 ^s•

On a démontré la proposition 6.4.
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6.6 Le théorème 1.8 de l'introduction dit que l'exposant de r vérifie

l'inégalité

a (r) > pd + (pd + 1) a (K/F), avec égalité si d 1

On a noté en 5.3 l'égalité e a (r) pd (e-1) + a(rx). Le lecteur vérifiera

sans peine que l'on a en outre oc (K/Fx) e a (K/F). Il nous suffit

donc de démontrer l'inégalité

a (ri) > Pd + (Pd +1) a (K/Fi) avec égalité si d 1

Remarquons que le théorème de Hasse-Arf appliqué à l'extension
abélienne K de F± nous dit que a (K/Fß) est un entier.

6.7 Prenons donc un sous-espace lagrangien X de V, fixant l'extension

E de Fu et choisissons un caractère y de WF qui induise à Wf1 un
relèvement p de rx.

Soit s un élément non-trivial de H Gai (L,/F1). Alors y5'1 Às

définit une extension Es de E, contenue dans K, totalement (et sauvagement)
ramifiée de degré p sur E: en effet, la restriction de p à WE est somme des

caractères yf pour s e H. Comme p est irréductible, ces caractères sont tous
distincts et ys~

1 est non-trivial. Comme l'image par p de WK est formée de

matrices scalaires, %s_1 est trivial sur WK. Par suite l'extension Es de E
fixée par Ker (ys~ est contenue dans K, cyclique sur E, donc de degré p
sur E.

Nous noterons Ls le corps des invariants de s dans E d'où [E : LJ p.
Le groupe de Galois de E sur Ls est le groupe Hs engendré par s. Celui

I de K sur Ls est l'image réciproque Vs dans V, du sous-espace Hs de H.
Celui de K sur Es est l'orthogonal VLS de Vs. Enfin, celui de Es sur E est

[ x/vî.

I 6.8 Le caractère y de WE induit à WLl une représentation irréductible
j de degré p de WLg. La représentation projective correspondante a pour
f noyau WEs, comme il est facile de le vérifier. Soit as l'exposant du conduc-

teur de Es sur E :

i as «(rv_1) a (As)

| La proposition 3 de [Bu, p. 31] peut alors se traduire en l'inégalité
| a(y)>asF ß (E/Ls).
J Si d =* 1 cette valeur as + ß (E/Ls) est d'ailleurs exactement la valeur

minimale des a (y), où y parcourt les caractères de WE induisant un
relèvement dq rt.

L'Enseignement mathém., t. XXVI, fasc. 1-2. 12
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Choisissant bien le sous-espace lagrangien X, nous essaierons d'évaluer

asetß(E/Ls).

6.9 Rappelons que a (K/FJ) est le plus grand indice m > 0 tel que le

sous-groupe de ramification Vm de V soit non nul. Mais le groupe Gal (FJF)
agit par conjugaison sur Vx en respectant la forme symplectique / associée

à r, et les Vm sont des sous-modules de V pour cette action. Mais l'on sait

que V ne possède pas de sous-module totalement isotrope non-trivial.
On en déduit d'abord que la restriction de / à Vm est non-dégénérée si

Vm est non-trivial, et aussi que si Vm est non-trivial, Vm n'est pas inclus
dans X; l'image de Vm dans H V/X, qui est égale à Hm, est alors non-
triviale. On a donc démontré la propriété suivante:

Lemme 6.9. On a ocÇK/FJ) — a(E/F1).

6.10 II nous faut maintenant choisir convenablement l'espace lagrangien

X.

Commençons par prendre un sous-espace lagrangien X de Vß(K/Fl)

ycc(K/Fi\ Prolongeons X en un sous-espace lagrangien X de V. Alors

on a X Xß(K/Fl) et si F est l'extension fixée par X, on a ß (K/E)
ß(K/F,).
Choisissons deux éléments s et s± de Vß(K/Fl) et XßiK/Fl) respectivement,

de façon que l'on ait / (s, sj) Al. Alors 5 définit un élément s non-trivial
de H V/X.

Soit Fs le corps fixé par l'orthogonal de 5 dans X. L'image $x de st
dans Gal (EJE) engendre ce groupe. Mais appartient à Xß(K/E)

xa{KIE). Si donc on appelle 71e groupe Gai {EJE), les groupes de

ramification de Y en numérotation supérieure sont Y1 Y pour 0 < / < a (K/E)
et Y1 1 pour i > a (K/E).

Mais

a (K/E) (pK/E (ß (K/Ej) (pK/E(ß (K/Fx)) cpK/E ^k/fi (a (K/F i))

a (K/E) (Pk/e ° ^k/e ° ÏÏejfi (a (K/Fi)) ^e/fi (a (^/^i)) •

Par suite, le conducteur de Es sur E est

oc (K/E) + 1 > a (K/FJ + 1

Remarque. S'il n'y a qu'un seul saut dans la ramification de V (i.e. si

V V ß(K/Fl) alors on a a (K/E) — oc(K/FJ) comme le lecteur le vérifiera
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aisément. C'est le cas en particulier si - 1 et plus généralement si V

est un module irréductible sur Gai F1).6.11 On a ainsi obtenu l'inégalité

«(z) > ß(E/Ls)+ « t) + 1

où Ls est le corps fixé par s dans E. Mais s est un élément de Ha(K,Fl)

H'Wi) He(E/Fl). Par conséquent, on a ß(E/Ls) ß(EIF1).

D'après le théorème donnant le conducteur d'une représentation

induite [Se, p. 109, Cor.], on aa(p) diElF,
donc

a (ß) >d{ElF1) + ß(ElFt)+ 1 + a

a p)>p" (a (K/F,) +1) + a C.Q.F.D.

Pour d1, la remarque de 6.10 et la proposition 3 de [Bu, p. 31]

donnent l'égalité
a (r) p* (a (K/FJ + 1) + a (KlFJ

6.12 Supposons que le groupe V soit un module irréductible pour
l'action de Gai (Fl/F). A-t-on alors l'égalité dans le théorème 1.8 Cette

question reste ouverte.
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