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REPRESENTATIONS DU GROUPE DE WEIL
D’UN CORPS LOCAL

par Guy HENNIART

0. RESUME

Soient F un corps local non archimédien, F une cloture séparable
algébrique de F, et W le groupe de Weil de F sur F. Soit r une représenta-
tion projective de Wy Nous montrons l’existence de représentations
linéaires relevant r et nous étudions leurs propriétés. Si r est primitive,
nous déterminons une borne inférieure pour l’exposant du conducteur
d’Artin de ces relévements.

1. INTRODUCTION

1.1 Soit F un corps local non archimédien, & corps résiduel fini de
caractéristique p. Soient F une cloture séparable algébrique de F, et Wp
le groupe de Weil de F sur F [We 1, app. II].

La théorie du corps de classes local donne une bijection entre les carac-
téres de Wy, i.e. ses représentations continues de degré 1, et les caractéres
du groupe multiplicatif F* de F.

1.2 R. P. Langlands conjecture qu’il y a une correspondance analogue
entre les (classes d’isomorphismes de) représentations irréductibles de W5
dans GL (n, C) et les (classes d’isomorphisme de) représentations super-
cuspidales de GL (n, F) '). Cette correspondance, entre autres propriétés,
doit conserver les facteurs L et ¢, ainsi que les conducteurs.

De méme, il existerait un tel lien entre les représentations irréductibles
de Wy dans SL (n, C) (resp. PGL (n, C)), et les représentations super-
cuspidales de PGL (n, F) (resp. SL (n, F)) [Bo].

1.3 En fait cette conjecture n’est établie que pour n = 2, [JL, Ku, Tu,

Yo, Ca, Ge]. On ne posséde que des renseignements partiels pour n > 2
[Co].

1) Ici, comme dans toute la suite, par représentation nous entendons représentation
continue.
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1.4 Nous étudierons ici les représentations de degré n de W (le versant
dit « galoisien » des conjectures de Landglands) en suivant pour cela la
méthode d’A. Weil [We 2].

Elle consiste a déterminer d’abord les représentations projectives
r: Wg— PGL (n, C), puis a trouver les représentations linéaires R : Wp
— GL (n, C) relevant r, c’est-a-dire telles que ’on ait # oR = r, ou 7 est
la projection de GL (n, C) sur PGL (n, C)

We
R
r
< !
GL (n, C) L, PGL(n,C)

Nous démontrerons, au chapitre 2, le théoréme suivant:

THEOREME 1.4. Toute représentation projective de Wy posséde un
relévement.

Ce théoréme ¢était déja connu pour les représentations projectives
irréductibles de Wy, [We 2, p. 3]. En fait, nous pourrions méme obtenir des
précisions sur le déterminant des relévements [He, ch. 5].

1.5 Les différents relévements d’une représentation projective donnée r
différent par torsion par un caractére. Notre but est d’étudier les conducteurs
d’Artin de ces relévements.

Si R est une représentation linéaire de Wp, nous noterons a (R) I’expo-
sant de son conducteur d’Artin, plus briévement appelé exposant de R;
le conducteur d’Artin de R est alors ¢ (R) = p&®, ot py est I'idéal maximal
des entiers oy de F.

Une représentation linéaire est dite primordiale si ’'on ne peut abaisser

son exposant par torsion par un caractere.

THEOREME 1.5. Soit R une représentation linéaire de Wy, irréductible,
primordiale et de degré n. Soit y un caractére de Wy. Alors on a

a(R®y) = sup (a(R),na(y)).

La démonstration de ce théoréme utilise la formule a (R) = n (x (R)+1),
valable pour une représentation irréductible et de degré n, ou « (R) désigne
le plus grand indice u tel que R soit non-triviale sur W, le sous-groupe
de ramification de W d’indice ¥ en numérotation supérieure.
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1.6 Une représentation projective irréductible de Wy est de type
galoisien, i.e. d’image finie. Nous sommes plus particuliérement intéresse€s
par celles dont, en outre, aucun relévement n’est une représentation induite:
on les appelle primitives. Ces représentations ont été étudiées par H. Koch
[Ko]. En particulier, I’on sait que leur degré est une puissance de la carac-
téristique résiduelle p de F. On appellera corps centrique d’une représentation
projective r de type galoisien, I’extension K de F fixée par le noyau de r:
elle est finie et galoisienne sur F.

Soit F, 'extension modérément ramifiée de F, incluse dans K, et maxi-
male pour ces propri¢tés. Nous noterons r; la restriction de r a Wr,. Si
r est primitive, r, est irréductible [Ko].

1.7 Nous appellerons exposant d’une représentation projective r
et nous noterons a (r) le minimum des exposants des relévements de r.

THEOREME 1.7. Si r est une représentation projective primitive de
degré p* de Wy, les exposants de r et de r, vérifient 1’égalité suivante :

ea(r) = (e—=Dp* +a(ry),

ou e estl’indice de ramification de F, sur F.

Ce théoréme est la généralisation de [Bu, Claim 1’, p. 29], qui traitait le
cas d = 1. Ce résultat et le suivant doivent beaucoup a un travail effectué
en commun avec J. Buhler au cours de I’été 1977. Les démonstrations
s’appuient essentiellement sur les méthodes et les résultats de [Bu]:

TuEOREME 1.8.  Soit o = sup {u|r(W%) # 1}. Alors [’exposant
a(r) de r vérifie l'inégalité suivante :

a(r)>p* +(@P'+Da.

Pour d = 1, on a méme I’égalité a (r) = p + (p+1) . Ce résultat est di
a J. Buhler [Bu, Thm. 4, p. 25].

Y a-t-1l égalité dans le théoréme précédent lorsque d > 1 ? Cette question
n’est pas résolue a présent.

1.9 Cet article est une version condensée d’une thése de 3e cycle sou-
tenue a Orsay en juin 1978 [He]. Cette thése a été effectuée sous la direction

de M. Cartier. Qu’il trouve ici exprimée ma reconnaissance pour l’aide
qu’il m’a apportée.
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2. RELEVEMENTS

2.1 Le groupe de Weil W est défini comme le sous-groupe du groupe
de Galois Gy = Gal (F/F) formé des éléments qui agissent sur le corps
résiduel k de F comme une puissance entiére de la transformation de Fro-
benius. Le groupe d’inertie /5, formé des éléments qui agissent trivialement
sur k, est un sous-groupe ouvert de Wp. Il a la topologie induite par celle
de Gp. L’inclusion ¢ de Wj dans G est ainsi continue et son image est
dense. Toute représentation de Gy définit donc, par composition avec @,
une représentation de W, que nous dirons de type galoisien. 11 est facile de
voir qu’une représentation de Wy est de type galoisien si et seulement si
son image est finie.

2.2 Rappelons que n désigne la projection de GL (n, C) sur PGL (n, C).
Nous appellerons non-ramifiée une représentation de Wy qui est triviale sur
Ir. Fixons un élément Fr de W induisant la transformation de Frobenius
sur k. Son image dans W/l ~ Z est alors génératrice. Une représentation
non-ramifiée de W est déterminée par la donnée de I'image de Fr.

Soient p et p’ deux représentations de Wy a valeurs dans GL (n, C) ou
PGL (n, C). Si les éléments de p (W) commutent a ceux de p’ (W) (on
dit, par abus de langage, que p et p’ commutent), I’on définit le produit

p.p parp.p'(9) = p(g)p' (g) = p' (9) p(g) pour g € Wrp.

THEOREME 2.2. Soit r une représentation projective de degré n de Wr.
Posons H = n~ 1 (r (Wg)). Alors il existe une représentation non ramifiée
p: Wiy — GL (n, C), telle que les éléments de p (W) commutent a ceux
de H et que la représentation r.(m Op) soit de type galoisien.

2.3 COROLLAIRE 1. Toute représentation projective irréductible de Wy
est de type galoisien.

COROLLAIRE 2. Soit R une représentation linéaire de degré n de Wr.
Alors il existe une représentation non-ramifiée & : Wy — GL (n, C) com-
mutant @ R, et telle que R .o soit de type galoisien.

COROLLAIRE 3. Toute représentation linéaire irréductible R de Wy
s’écrit sous la forme R = S ® y ou S est de type galoisien et y un carac-
tere non-ramifié.

2.4 Démontrons le corollaire 1: soient r la représentation projective
considérée et p la représentation non-ramifiée donnée par le théoréme 2.2.
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Comme r est irréductible H est un sous-groupe irréductible de GL (n, C).
Mais les éléments de p (W) commutent & ceux de H. Par suite p (Wp)
est formé de matrices scalaires et m op est triviale. Donc r est bien de type
galoisien.

Démontrons les corollaires 2 et 3. Soit R : Wy = GL (n, C) une repre-
sentation linéaire. Appliquons le théoréme 2.2 & » = n o R. On obtient une
représentation non-ramifiée p, commutant a R, et telle que r . (m0p) soit
de type galoisien. Alors, il existe un entier m tel que r. (mo p) (Fr™) soit
trivial dans PGL (n, C); la matrice R . p (Fr™) est scalaire. Or il existe un
caractére non ramifié y de Wy tel que R.p (Fr™) = x (Fr™) . 1,, ou 1,
désigne la matrice unité d’ordre n. Ecrivant S = R.(p®x~ '), on a
S (Fr™) = 1,, et S est de type galoisien, ¢ = p ® x~ ' étant une représen-
tation non-ramifiée commutant a R. On a donc démontré le corollaire 2.
Si R est irréductible, o (W5) est formé de matrices scalaires, donc ¢ définit
un caractére non-ramifié y. On a alors R = S ® y, avec y non ramifié,
d’olt le corollaire 3.

2.5 La démonstration du théoréme 2.2 utilise un raffinement du rai-
sonnement de [De, p. 542].

Soit r une représentation projective de degré n de Wr. Comme r est
continue, elle est triviale sur un sous-groupe ouvert de I,. Posons
J = Ker (r| Iy) = Ker (r) n I: ainsi J est invariant dans W5. L’on fait
agir Wy par conjugaison sur Ip/J. Comme [I;/J est fini, une puissance de
Fr, disons Fr™, agit trivialement. Soit x € W5. On voit que r (Fr™) commute
a r (x). Soient ¢ et y des €éléments de GL (n, C) tels que 7 (¢) = r (Fr) et
n(y) = r(x). On a ainsi @™y = sye™, ou s est un nombre complexe
non-nul. Prenant le déterminant des deux membres, on obtient s" = 1

et par suite ¢™" commute a y. On en conclut que ¢™ commute a tous les
éléments de H = n~ ' (r (Wp)).

2.6 Nous laissons au lecteur le soin de montrer qu’il existe un poly-
noéme Q e C [T] tel que:

Q(T)™ =T modulo P(T),

ou P désigne le polyndme minimal de @™,
Posons ¢, = Q0 (¢™). On obtient ainsi une matrice ¢,, commutant

a tous les éléments de H et telle que )" = ¢™. Définissons la représen-
tation non-ramifiée p par:

o(Fr) = o',
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Evidemment p (Wy) commute a H et 'on a r.(nop) (Fr™) = n (o)™
n(p,)” ™ = 1,, donc r. (nop) est de type galoisien. C.Q.F.D.

2.7 THEOREME 2.7. Toute représentation projective de Gy (resp. Wy)
posséde un relevement.

Ce fait est bien connu pour Gy [We 2, p. 2]. Ainsi une représentation
projective de type galoisien de W a un relévement de type galoisien.

Pour le cas de Wy (c’est le théoréme 1.4 de I’introduction), ’on utilise
le théoréme 2.2. On a donc une représentation non-ramifiée p de W,
les €léments de p (W) commutant & ceux de H, et telle que r. (m 0p)
soit de type galoisien. Il existe un relévement R de r . (n op). Mais alors p
commute a R, puisque les éléments de p (W) commutent entre eux et a
ceux de H. La représentation R.p~ ! est un relévement de r. C.Q.F.D

3. EXPOSANTS ET CONDUCTEURS

3.1 Si R est une représentation linéaire de Wy, on peut définir, a
laide de la distribution de Herbrand [We 1, App. I] I’exposant de son
conducteur d’Artin, appelé plus brievement exposant de R, et noté a (R).
Si R se factorise a travers le groupe fini G = Gal (K/F), c’est aussi ’expo-
sant, défini dans [Se, p. 107], de la représentation de G que R détermine.
Cet exposant ne dépend que de la restriction de R a I,. Pour une représen-
tation non-ramifiée p, on a a(p) = 0, et si p commute a R, on a a(R)

= a(R.p).

3.2 L’on peut définir, comme dans [Se, p. 83, Rem. 1], les sous-groupes
Wi de Wp pour ue R, u > —1: ce sont les sous-groupes de ramification
de Wy en numérotation supérieure. Si G = Gal (K/F) est un quotient fini
We/Wy de Wy, on a G* = Wy Wp/Wg. On a Wit = W, le groupe W3
est le groupe d’inertie I, et le groupe d’inertie sauvage Py est la fermeture

de 'union des Wy pour ¢ > O.
Si K est une extension galoisienne finie de F et G son groupe de Galois

sur F, nous poserons
a(K/F) = sup {u|G*#1} et PB(K/F)=sup{v|G,#1}.

On a
B(K[F) = 'ﬁK/F(O‘ (K/F)) et «(K[F) = Ok /r (ﬁ (K/F))

ol @k r et Yg r sont les fonctions de Herbrand [Se, p. 80].
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3.3 Soit R une représentation linéaire de W5. Si R est triviale, posons
« (R) = 0. Sinon, nous noterons « (R) le plus grand indice u tel que l'image
de R (W% soit non-triviale. Un tel o (R) est bien défini: si R est non-
ramifiée, on a R(Wy) # 1 et R(Wy =1 pour ¢ > —1, d’ou «(R)
= —1. Si R est ramifiée, prenons une représentation non ramifiée p,
commutant & R, et telle que R.p soit galoisienne. Soit K le corps fixe
par le noyau de R.p. Alors a (R . p) existe et vaut « (K/F). Mais il est
clair que pour u > —1, on a R.p(Wy) = R (Wg). Ainsi o (R) est
défini et vaut o (K/F).

3.4 1l est bien connu que si y est un caractére de Wy, alors on a
a(y) = a(y) +1 [Se, p. 109, prop. 5].

Nous voulons généraliser cette formule. Nous dirons qu'une représen-
tation linéaire R de Wy posséde la propriété A sila restriction de R & WH™®
est sans point fixe non-trivial.

Il est clair qu'une représentation irréductible R vérifie la propriété A:
en effet, comme W% est invariant dans Wy, la restriction de R a W™ a
des composantes irréductibles conjuguées entre elles; cette restriction étant
non-triviale, aucune composante ne peut &tre triviale.

3.5 La proposition suivante est une traduction de [Se, p. 108, Cor. 1]:
PrOPOSITION 3.5. Soit R une représentation linéaire de Wy se fac-
torisant par le groupe fini G = Gal (K/F). Alors on a

0

Y |G,]| codim (V°),

I olv=0

a(R) =
o VO désigne [’espace des points fixes par le groupe G,.

THEOREME 3.5.  Soit R une représentation linéaire de degré n de Wy,
vérifiant la propriété A. Alors ona a(R) = n (x (R)+1). b

Démonstration. C’est clair si R est non-ramifiée. Si R est ramifiée,

on peut, par le théoréme 2.2, se ramener a R de type galoisien se factorisant
par le groupe fini G = Gal (K/F).
Alors
B
Y. codim (V°%).]|G,],

’ 0 | v=0

a(R) =

N 1_11) Cette formule avait été signalée, sans démonstration, dans une prépublication de
. Howe.

L’Enseignement mathém., t. XXVI, fasc. 1-2. 11
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ou f = B(K/F). Maison a G, = W§™ . Wy/Wy et R vérifie la propriété
A. Par suite on a dim ¥°6 = O et aussi dim V% = 0 pour v < . On a donc
| G, |
A

B |Gv| B
a(R)y =n ) —=n<1+z
v=0 IGOI v=1

d’olt a (R) = n(1+a(R)). C.Q.F.D.

> = n (1 +a(K/F)),

3.6 COROLLAIRE 1. Soient R et S deux représentations linéaires de
W de degrés n et m respectivement. Supposons que R, S et R® S
vérifient la propriété A. Alors on a a(R®S) < sup (ma (R), na (S))
avec égalité si ma (R) # na(S).

Rappelons qu’une représentation linéaire est dite primordiale si I’on
ne peut abaisser son exposant en la tordant par un caractére. Le corollaire 2
implique immédiatement le théoréme 1.5.

COROLLAIRE 2. Soit R une représentation linéaire de Wy, primordiale,
de degré n, et vérifiant la propriété A. Soit y un caractére de Wy. Alors

ona a(R®y) = sup (a(R), na(x)).

3.7 Démonstration des corollaires. Le théoreme 3.5 nous permet
d’écrire

@41 =" o sy 1=
n m

Mais il est clair que 'on a « (R®S) < sup (« (R), « (S)), avec I’égalité
si o (R) # o (S). On en déduit le corollaire 1. Prenant S = y, on obtient
le corollaire 2, puisque, par hypothése, on a toujours a (R®y) > a (R).
C.Q.E.D.

Une conséquence immeédiate du corollaire 2 est la remarque suivante:

Remarque 3.7. Soit R une représentation linéaire de Wy, irréductible
et de degré n. Si a (R) n’est pas multiple de n, R est primordiale.

4. CARACTERES CENTRIQUES

4.1 Rappel et notations. Si L est une extension finie de F, nous note-
rons 7, : W, — L* Tapplication de réciprocité définie par la théorie du
corps de classes local. On sait qu’elle donne une bijection entre les carac-
téres de L et ceux de W, par la formule y — yot;.
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On a également 7, (W) = UM pour u > —1 ou [u] désigne le
plus petit entier supérieur ou égal a u, et Uy est le groupe des unités de
Panneau des entiers o; de L, congrues & 1 modulo la puissance m° de
I’'idéal maximal p;.

4.2 Dans toute la suite, r désignera une représentation projective de
degré n de W, de type galoisien. On notera K le corps centrique de r (C’est
le corps fixé par Ker (7)), et G le groupe Gal (K/F).

Nous étudierons les relévements R de r. On définit /e caractere centrique
vz de R, qui est un caractére de K*, par la formule R (g) = g0 tx (9) . 1,
pour g € Wy, ou 1, désigne la matrice d’unité d’ordre n.

Les relévements de r différent par un caractére de Wy. Si 'on tord R
par a O Ty, oll ¢ est un caractére de F *, le caractére yp est tordu par « 0 Ny,
ol Ng,r est la norme de K* a F*. Par suite,  détermine la restriction y,
de yx a KV, noyau de N p.

Comme yy est invariant par G, y, est trivial sur K, le sous-groupe de
K* engendré par les éléments x*~1, xe K*, se G. Donc y, définit un
caractére de H ™! (G, K*) = K"/K!. On peut donner une formule coho-
mologique pour y, et prouver la proposition suivante [Bu, Th. 1] ou [He,
chap. 6]:

ProrosITION 4.2.  Un caractére y de K* est le caractere centrique
d’un relévement de r si et seulement s’il prolonge ..

4.3 Nous noterons a (x) ’exposant du caractére y de K*, & savoir le
plus petit entier m tel que y soit trivial sur Ug. On a a (y) = a (yotg).
Nous notons e (K/F) I'indice de ramification de K sur F, et d (K/F) ’exposant
différental de cette extension.

THEOREME 4.3. Soit R un relévement de r, tel que l'image par R
de WHER AWy ne laisse fixe aucun élément non nul de C". Alors on a:

¢(K/F)a(R) = n(d(K/F) + a (1)
et

a(xr) = P(K[F) + 1.

Cette derniere inégalité est stricte si Wy contient WER.

L’égalité concernant a (R) découle immédiatement de [Bu, prop. 2,
p. 25]. Pour une généralisation, voir [He, chap. 7].

4.4 L’inégalité a démontrer s’écrit encore

e(K[F)a(R) = n(d(K[F) + B (K/F) + 1).
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Par hypothése, la restriction de R & WA® A W, est sans point fixe non-
trivial. Par suite, R vérifie la propriété A, et, utilisant le théoréme 3.5,
I’on voit qu’il faut démontrer:

e (K/F) (oc(R) + 1) > d(K/F) + B(K/F) + 1.
LEMME 4.4. On a
e (K/F) (oc(K/F) + 1) = d(K/F) + p(K/F) + 1.

Démonstration. Rappelons que G = Gal (K/F). Par [Se, prop. 4,
p. 72], on a

& B (K/F)
d(K/F): _Z (lGil“l): Z (lGil_l)
d’ou
B(K|F) B(K/F) | il
AKIF) + B(KIF) +1 = 3 |G| =|6,| <1+ > |G|> -
i=0 i .

= | G,| (1 +oxr (B(K/F)) = e(K/F)(x(K/F)+1)  C.Q.F.D.

4.5 11 suffit donc de démontrer I'inégalité o (R) > « (K/F), qui est
claire puisque la restriction de r & W%¥/®), donc aussi celle de R, est non-
triviale. De plus, si I'on a W™ < Wy, on a WiR ;: waEE) g on
o (R) > a (K/F) et I'inégalité est stricte. C.Q.F.D.

La remarque 1 qui suit [Bu, prop. 2, p. 25] donne aussit6t le corollaire
suivant au théoréeme 4.3:

COROLLAIRE. 87 la restriction de r a Pp est irréductible, on a

e(K/F)a(R) = n(d(K/F)+a(yr)
et
a(xr) > B(K/F) + 1.

5. REPRESENTATIONS PRIMITIVES

5.1 Nous conservons les hypothéses et notations précédentes. Ainsi 7
est une représentation projective de Wy, de type galoisien et de degré n.
On notera F; la plus grande extension modérément ramifiée de F contenue
dans le corps centrique K de 7, et ry la restriction de r & Wp,. Le groupe
G, = Gal (K/F,;) est le sous-groupe de ramification sauvage de
G = Gal (K/F).
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Nous nous intéressons aux représentations r vérifiant:
1) n>1;

2) r, est irréductible.

Ces hypothéses sont vérifiées si r est primitive non-triviale (voir [Ko],
ou I’on trouvera une description des représentations projectives primitives
de Wy).

5.2 Comme r, est irréductible, sa restriction a P I’est aussi. On peut
donc appliquer a r et r{ le corollaire au théoréme 4.3.

Soit R un relévement de r; on notera R, la restriction de R a Wr,.
Soit p un relévement de r,. On a alors

e(K/F)a(R) = n(d(K/F)+a(xr))
et

e(K[F)a(p) = n(d(K[F)+a(y,).

Remarque. De ces deux formules avec p = R, on tire (car yg = yg,)
ea(R) =n(e—1)+ a(R,), o e = e(F,/F).

Cette derniére égalité peut €tre généralisée, cf. [He, chap. 7].

De plus 'on a a(x,) > B (K/F,) + 1.

5.3 Appelons b (r) (resp. b (ry)) le minimum des a (yz) (resp. a (x,))
quand R (resp. p) parcourt ’ensemble des relévements de r (resp. r,).
Supposons que 'on ait & (r) = b (ry). Prenons R tel que a (xg) = b (r).
On a alors a(R) = a(r) et a(R;) = a(ry), puisque xg, = xg- Par suite,
on a I’égalité
ea(r) =n(e—1) +a(ry).

Le théoréme suivant généralise légérement le théoréme 1.7 de lin-
troduction:

THEOREME 5.3. Soit r une représentation projective de Wy, de degré
n> 1 et de type galoisien. Supposons que r, soit irréductible. Alors on a
b(r)y =1>0b(ry) et ea(r) =n(e—1)+ a(r,), ot l'onaposé e = e (F,/F).

5.4 Démonstration. 11 suffit de prouver la premiére égalité. Mais

d’aprés 5.2, on a b (r;) > B(K/F,) + 1. Le théoréme 5.3 est alors une
conséquence directe de la proposition suivante:
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ProposiTION 5.4.  Soit r une représentation projective de type galoisien
de Wye. Sil'ona b(r)) > B (K/Fy), alorsona b(r) = b(ry).

Comme en 4.2, on définit le caractére y, de K¥, noyau de la norme de
K* a F*. De méme, on définit le caractére y,, de K™ noyau de la norme
de K* a F*. Alors b (r) est le plus petit entier m > 0 tel que 'on puisse
étendre y, en un caractére de K* trivial sur Uk. Par le lemme d’extension
de [Bu, p. 14], c’est aussi le plus petit entier m > 0 tel que y, soit trivial sur
KY n U¥%. On a un résultat analogue pour 7.

5.5 Il estclair que y,, est la restriction de y, a K™, Par conséquent, on
a b(r) >b(r,). Remarquant que y, est trivial sur K, on voit que la pro-
position 5.4 découle, de fagon évidente du lemme suivant:

LEMME 5.5. Soit m un entier strictement supérieur a B (K/F;). Alors

on a
KNA U = (KA U (KInUD).

Nous suivrons, pour démontrer ce lemme, 'argument de [Bu, p. 30].
Supposons m > f (K/F,), et prenons xe K" n Ug. Le lemme de [Buy,
p. 30] nous dit que H ™' (Gal (F,/F), Ur,) est nul. Il nous permet d’écrire

Ng g () = I 3=l ou les y, appartiennent 2 U}?;, m' étant le
i=1

plus petit entier supérieur ou égal a @k, (m), et ou les 5,1 = 1, ..., v,
sont des éléments de G dont les images dans Gal (F;/F) engendrent ce
groupe.

Comme on a m > §(K/F,), y; est la norme de K a F; d’un élément
y; de U¥% [Se, chap. V, § 6]. On peut donc écrire:

v
x =x" [] yii7' avec x'eU} et Ngp&x)=1.
i=1

Par suite
xe(U™ A KM (K n Ug
et 'on a
KNAU" < (U K'Y (KI A U,

d’ou I’égalité puisque I’inclusion dans I’autre sens est évidente. Ceci prouve
le lemme 5.5 et donc le théoreme 5.3.

¥ R
; B
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6. MINORATIONS D’EXPOSANTS

6.1 Dans ce chapitre, nous démontrerons le théoréme 1.8. Nous
conservons les notations précédentes et supposons de plus r primitive.
Il nous faut rappeler briévement quelques résultats de [Ko].

Nous avons déja dit que r, est irréductible; ceci entraine que le degré n
de r est une puissance de la caractéristique résiduelle p de F, disons n = p a
d > 1. Le degré de K sur F, est alors p*? et 'on démontre que le groupe
V = G, = Gal (K/F,) est un groupe abélien d’exposant p; on peut donc
le considérer comme un espace vectoriel de dimension 2d sur le corps fini
F, a p éléments.

6.2 Sur cet espace vectoriel, r; définit une forme symplectique f, a
valeurs dans y,, le groupe des racines de I'unité d’ordre p dans C*, autrement
dit, f est une application bilinéaire alternée de V' x V dans pu, p, €tant
considéré de fagon évidente comme un espace vectoriel sur F,,.

Pour définir f, prenons un relévement R; de r;. Si a (resp. b) est un
¢lément de ¥, prenons un représentant a (resp. b) de a (resp. b) dans Wp,.
Alors R, (aba~'bh~ 1) s’écrit sous la forme f (a, b) 1 a, 00 1 4 estla matrice
d’unité d’ordre p?: en effet, r, (aba~*b~ 1) est trivial. H. Koch montre
que on a f (a, b) € u, et que f est symplectique.

Le fait que r, soit irréductible équivaut au fait que f soit non-dégénérée.

Le groupe G = Gal (K/F) agit par conjugaison sur V en respectant la
forme symplectique f. Cette action se factorise en fait par Gal (F/F).
On peut exprimer le fait que r est primitive, en disant que V ne contient
aucun sous-module sur G qui soit totalement isotrope.

6.3 L’on peut facilement construire des relévements de r;. Soit X
un sous-espace lagrangien de V, i.e. un sous-espace totalement isotrope
maximal. Soit £ I’extension de F; fixée par X. On a alors [K : E] = [E : F,]
= p? et il existe un caractére y de W, tel que la représentation induite de X
a Wr, releve ry.

Inversement, si E est une extension de F, telle qu’un caractére de W,
induise un relevement de r;, alors E est incluse dans K et X = Gal (K/E)

est un sous-espace lagrangien de V. De plus, tout relévement de r, est
induit & partir de W;.

6.4 L’on peut donner une condition nécessaire (et suffisante si d = 1)
pour que le caractere y de Wy induise & Wpr, un relévement de r;.
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Posons H = V/X = Gal (E/F;). Soit s un élément de H. Définissons
le caractére A, de W de la fagon suivante: si x € Wi, on note ny (x) sa
projection dans X, et on appelle § un représentant quelconque de s dans V.
Alors A  est donné par la formule suivante:

As(x) = f(5,myx(x)) pour xeWg.

On vérifie facilement que I’application s — A, est un homomorphisme
de H dans le groupe des caractéres de Wy triviaux sur Wy. De plus, comme
K est une extension abélienne de F,, H agit trivialement (par conjugaison)
sur Wg/Wy, et A est invariant par H.

Remarques. 1) f étant non-dégénérée, le caractére A, est non-trivial
pour se H, s # 1.

2) E étant galoisienne sur F,, le groupe H agit sur les caractéres de
Wy par x*(x) = x (oxo™ '), ol o est un représentant dans Wy, de I'élément
s de H.

PrROPOSITION 6.4. Soit x wun sous-espace lagrangien de V fixant le
corps E. Soit y un caractére de Wy. Si y induit a Wp, un relévement
de ry, l'ona y*~' = A, pour tout élément s de H. Si d = 1, cette
derniére condition est suffisante pour que y induise un relévement de r.

6.5 Démonstration. Montrons d’abord la nécessité de la condition:
posons p = Indzﬁlx. SiseHet xe Wg ona

) = gloxe i xTh),

ou ¢ est un représentant (quelconque) de s dans Wr,.
Mais comme le commutateur ¢ x ¢~ ' x~! est dans Wy, la matrice

p (ox o~ x~1) est la matrice scalaire
y(exo 1x71), 1a.
Par suite, si § est 'image de ¢ dans V, on a:
LT = Gy () = A,(x)  de Tt = A

Si d = 1, E est une extension cyclique de F, de degré premier, et il
existe un caractére y, de Wy tel que y, induise un relévement de r,. On a
donc yi~' = A,. Mais il résulte de [Bu, p. 33] que le caractére y de Wy
induit un relévement de r, si et seulement siona 3~ ! = 571 e x* 7! = A,

On a démontré la proposition 6.4.
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6.6 Le théoreme 1.8 de lintroduction dit que I'exposant de r vérifie
P'inégalité
a(@) >p* + '+ 1) a(KJF), avecégalitési d = 1.

On a noté en 5.3 I’égalité ea (r) = p? (e—1) + a(ry). Le lecteur véri-
fiera sans peine que 1’on a en outre « (K/F;) = e« (K/F). Il nous suffit
donc de démontrer I'inégalité

a(ry)=>p" +(P*+1)«(K/F,), avecégalittsi d =1.

Remarquons que le théoréme de Hasse-Arf appliqué a Dextension
abélienne K de F,; nous dit que « (K/F,) est un entier.

6.7 Prenons donc un sous-espace lagrangien X de V, fixant I'exten-
sion E de Fy, et choisissons un caractere y de Wy qui induise a Wr, un
relevement p de ry.

Soit s un élément non-trivial de H = Gal (E/F,). Alors y*~ ! = J
définit une extension £ de E, contenue dans K, totalement (et sauvagement)
ramifiée de degré p sur E: en effet, la restriction de p a W est somme des
caractéres y° pour s € H. Comme p est irréductible, ces caractéres sont tous
distincts et ¥*~ ! est non-trivial. Comme I’image par p de Wy est formée de
matrices scalaires, y°~ ' est trivial sur Wy. Par suite I’extension E, de E
fixée par Ker (y°~ 1) est contenue dans K, cyclique sur E, donc de degré p
sur E.

Nous noterons L, ie corps des invariants de s dans £ d’ou [E : L] = p.

Le groupe de Galois de E sur L est le groupe H, engendré par s. Celui
de K sur L est I'image réciproque ¥V, dans V, du sous-espace H, de H.
Celui de K sur Ej est I'orthogonal V5 de V.. Enfin, celui de E, sur E est
XV

6.8 Le caractere y de Wy induit a W, une représentation irréductible
de degré p de Wi . La représentation projective correspondante a pour
noyau Wg_, comme il est facile de le vérifier. Soit a, 'exposant du conduc-
teur de E, sur E:

a, =a(*"") = a(l).
La proposition 3 de [Bu, p. 31] peut alors se traduire en I'inégalité
a(y) =as + B(E[Ly).
Si d = 1 cette valeur a, + B (E/L,) est d’ailleurs exactement la valeur

minimale des a (x), ol y parcourt les caractéres de W, induisant un relé-
vement de r,.

L’Enseignement mathém., t. XXVI, fasc. 1-2. 12
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Choisissant bien le sous-espace lagrangien X, nous essaierons d’évaluer
a, et B(E/L)).

6.9 Rappelons que « (K/F,) est le plus grand indice m > 0 tel que le
sous-groupe de ramification V'™ de V soit non nul. Mais le groupe Gal (F,/F)
agit par conjugaison sur V; en respectant la forme symplectique f associée
a r, et les V'™ sont des sous-modules de V' pour cette action. Mais I’on sait
que V ne possede pas de sous-module totalement isotrope non-trivial.

On en déduit d’abord que la restriction de fa V'™ est non-dégénérée si
V'™ est non-trivial, et aussi que si V'™ est non-trivial, '™ n’est pas inclus
dans X; 'image de V'™ dans H = V/X, qui est égale a H™, est alors non-
triviale. On a donc démontré la propriété suivante:

LEMME 6.9. Ona o(K/F,) = a(E[F)).

6.10 1l nous faut maintenant choisir convenablement ’espace lagran-
gien X.

Commengons par prendre un sous-espace lagrangien X de Vg r)

= yX/FU Pprolongeons X en un sous-espace lagrangien X de V. Alors

on a X = Xy et si E est Iextension fixée par X, on a f(K/E)

= B (K/Fy).

Choisissons deux €léments § et §; de Vg, pp) €t Xp(k r,) T€SPECtivement,
de fagon que 'on ait f (5, §,) # 1. Alors § définit un élément s non-trivial
de H = V/X.

Soit E; le corps fixé par 'orthogonal de § dans X. L’image s, de §,
dans Gal (Ej/E) engendre ce groupe. Mais §; appartient a Xpg/p
= X*K/E)_Sj donc on appelle Y le groupe Gal (E,/E), les groupes de rami-
fication de Y en numérotation supérieure sont ¥ = Y pour0 <i < « (K/E)
et Y' =1 pouri > a(K/E).

Mais

2 (K/E) = ¢ge(B(K/E)) = oxp(B(K[Fy)) = @x/p¥xr (2 (K[Fy))
o (K/E) = ¢gp0 Ygse © Yir (0 (K[Fy)) = g, (2 (K[Fy)).
Par suite, le conducteur de E sur E est
«(K/E) + 1 > a(K/F;) + 1.

Remarque. S’il n’y a qu’un seul saut dans la ramification de V (i.e. si
V =V pxrp alorson a a(K/E) = a(K/F;) comme le lecteur le vérifiera

{
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aisément. C’est le cas en particulier si d = 1 et plus généralement si V
est un module irréductible sur Gal (F,/F).

6.11 On a ainsi obtenu l'inégalité

ol L, est le corps fixé par s dans E. Mais s est un élément de H a(K/F1)
= H*KIFV = Hy . Par conséquent, on a f(E/L) = B (E[F)).

D’aprés le théoréme donnant le conducteur d’une représentation
induite [Se, p. 109, Cor.], on a

a(p) = d(E[Fy) + a(y)
donc
a(p) > d(E[Fy) + B(E[F;) +1 + a(K/[Fy)

a(p) > p*(«(K/F)+1) + a(K/Fy). C.QF.D.

Pour d = 1, la remarque de 6.10 et la proposition 3 de [Bu, p. 31]
donnent I’égalité
a(r) = p* (¢ (K[F)+1) + a(K[Fy).

6.12 Supposons que le groupe ¥ soit un module irréductible pour
’action de Gal (F,/F). A-t-on alors 1’égalité dans le théoréme 1.8 ? Cette
question reste ouverte.
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