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2.2. La donnée d’'un 4 (GL,)-comodule E fournit pour toute 4-algébre 4’
un A’ [GL, (4")]-module par:

v id

id ® d v
A'[GL, (4] ® 4E — > A'[GL,(A)] ® 44 (GL) ®E —» A’ ® 4E
ou év:A4'[GL,(4")] ® 44 (GL,) > A" est I'homomorphisme d’évalua-

tion. Par suite, on a des homomorphismes d’anneaux canoniques

eyt Ry(GL,) » Ry (GL,(A); Er>A4' ® 4E.

Remarque. D’une manicre générale, si H est une algebre de Hopf qui
est de plus un 4-module plat, on notera R, (H) le groupe de Grothendieck
de la catégorie 2, (H) des H-comodules qui sont projectifs de type fini
en tant que A-modules. Comme pour R, (GL,), on montre que R, (H)
est un anneau commutatif avec unité. Nous utiliserons les algébres de Hopf

A (Mn) = A {Xlla weiey Xnn}» A (Tn)
= A [XD eees Xn]a A (Mnx Mm) =4 [Xl 15 +oos Apps Yl 15 o0 Ymm] ’
dont les groupes de Grothendieck R, (H) s’interprétent comme repré-

sentations polynomiales de M, (n*xn matrices), T, (matrices diagonales)
et M, X M,, respectivement.

3. LE PRE-A-ANNEAU R, (H)

Définition 3.1 [11, [2]. Un pré-i-anneau (A-ring) R est un anneau com-
mutatif avec unité, muni d’une suite d’opérations { A" }uso Vérifiant les
propriétés suivantes :

i) A°x) =1etA(x) =x

() A*(c+p) = Yimo A1 (x) - AF7H(p).
En introduisant les séries formelles 4, (x) = Y 2,4 (x) t' et

Vo) = =12 (log 4,(9) = — 1 (540 )
dt dt
on définit une suite d’opérations * : R > R, k > 0 (opérations d’Adams )
par
Vo (x) = i (= DY (%) 7.

L’Enseignement mathém., t. XXVI, fasc. 1-2. 10
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On vérifie immédiatement que les opérations y/* sont des endomorphismes
de groupe et que Y' (x) = x. D’autre part, on tire de la définition la for-
mule [1]:

(9 WF =P L (=D T (D = 0

qui peut servir de définition par récurrence des opérations d’Adams. Si x
est de rang 1, c’est-a-dire 4, (x) = 1 + xt, on vérifie par induction sur &
a I’aide de la formule (*) que y* (x) = x*.

Si H est une A-algebre de Hopf qui est de plus un A-module plat, nous
allons définir des opérations A* sur R, (H). Soient Ee #,(H) et k > 1
entier. On considére la k-iéme puissance tensorielle E* = E® 4 ... ® LE
(k facteurs) munie de la structure de H-comodule

dE ® ... ® dE m g id
- > H®. HKER..QRE — H

RER...RQE

ou m est la multiplication de k facteurs dans I’algébre de Hopf H (si H
= A (GL,), m est induite par la diagonale 4 : GL, - GL, X ... X GL)).
Le sous-module de E* engendré par les x; ® ... ® x;, ou x; = X; pour un
i #j, est muni d’une structure de H-sous-comodule de E*: si dg (x)
=>a®x, m [(dy®@dp) (x®@x)] = m [Ca®x)® Q@ x)] = et
® x; @ Xx; + ), 20,¢s ® (x,®x,+x,®x,). Par passage au quotient, on
obtient un H-comodule A*E (k-iéme puissance extérieure).

On convient que A°E = A (H-comodule trivial défini pard, (1) = 1®1).
On vérifie que A*Ee 2, (H) au moyen de la formule classique sur les
A-modules

E®..QFE

ME@F) ~ @i 'E @ ¥ 'F

car il est clair que les puissances extérieures de modules libres sont des

modules libres.
Sil + R, (H) [[t]] * désigne le groupe multiplicatif des séries formelles
sur R, (H) de terme constant 1, il s’avere que la formule

'1t { E} - Zi-i—oo [;LLE:] ti
sur les générateurs de R, (H) induit un homomorphisme de groupes
At Ry(H) -1+ RyH)[[]]"

et par suite une structure de pré-A-anneau sur R, (H). Le point essentiel
de la démonstration est le
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LEMME 3.2. Si 0>V > W > V' —> 0 est exacte dans P, (H), alors
[Fw] = Yok, [AV]-[A'V'] dans R,(H)
¢'est-d-dire A, : Ry (H) =1+ R,(H) [[t]]" est bien définie.
Preuve. Soit f : W™ — A"W la projection canonique. En tensorisant

la suite 0 = V' —» W — V' — 0 suffisamment de fois par V' et W, on obtient
une filtration

OCV"CV™l@WC..CVIQ W iC..CW".

L’image par f de cette filtration f (V'Q W™~ %) = W, est une filtration
du H-comodule A"W (W, coincide avec le sous-module engendré par
les x; A ... A X, ayant au moins i facteurs dans ). On va montrer d’une
part que

WIW, 1 ~ AV ® A" 'V’ (en tant que H-comodules)

et d’autre part que les W, sont des objets de 2, (H). Alors, par définition
du produit dans R, (H), on a

[AV]-[A"V'] = [AV 4" 7V']
et d’autre part, on aura (en posant W, ,;=0)
[/lmW] = Zi;no [Wi/Wi+1] .

Le lemme suit alors directement de ces considérations. Pour montrer
Pisomorphisme W /Wi, ~ AV ® A" 'V’, on considére le diagramme

i m—i f
rew >~ Wi ol p; est induit
l ; l par la projection
. . f’ ¥ p:W—V,
vie vt > Wi Wi
/

N/

/liV ® lm-—i V/

Il est clair que f induit les homomorphismes de H-comodules f’ et £”.
Pour vérifier que f” est un isomorphisme, il suffit de vérifier que f” est
un isomorphisme de A4-modules. Mais, en tant que A-modules, W ~ V
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@V’, donc A"W ~ @ LAV ® A"V, et via cet isomorphisme, W,/ W, ,
s’identifie a A'V @ A"V,
Enfin, les suites exactes

O Wiy > Wi Wi W,y -0

montrent par induction que les W, sont A-projectifs de type fini pour
i=20,1,..,m+1. ]

On déduit immédiatement du lemme 3.2 que les opérations A* définissent
une structure de pré-A-anneau sur R, (H) (donc en particulier sur R, (GL,),
Ry (M), Ry (T,), Ry (M, % M,) etc.).

Remarques. (1) En suivant exactement la méme démarche, on munit
les anneaux R, (G) d’une structure de pré-A-anneau (A* est la k-iéme puis-
sance extérieure munie de ’action diagonale de G), naturelle vis-a-vis des
homomorphismes de restriction et d’extension des scalaires, et compatibles
avec les homomorphismes canoniques définis sous 2.2

eA: . RA (GLn) —> RA' (GLn (A,))
(2) Le dual V* = Hom, (V, A), muni de ’action de G définie par
(g f)x) = f(g™" x)

induit une involution de pré-A-anneau sur R, (G). On en déduit des opéra-
tions d’Adams d’indice négatif

YRR = PR = (PF()*, k> 0.

Ces opérations vérifient aussi la condition ¥ ™% [P] = [P]7%, k > O sur les
éléments de rang 1 (pour autant que la notation [P]~! ait un sens, c’est-
a-dire [P] inversible), ce qui justifie leur appellation.

On dit qu’un H-comodule E # 0 est simple s’il ne possede pas de sous-
comodule propre; E est dit semi-simple s’il est somme directe de sous-
comodules simples.

LEMME 3.3. Si F est un corps, le groupe de Grothendieck Ry (H)
s ’identifie au groupe abélien libre sur [’ensemble des classes d’isomorphisme
de H-comodules simples.

Preuve. Comme les espaces vectoriels de dimension finie sont de lon-
gueur finie, tout objet de Z (H) est a fortiori de longueur finie. Main-
tenant, comme la catégorie Z5 (H) est abélienne, le théoréme de Jordan-
Holder [5] s’applique et le lemme en résulte.

|
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COROLLAIRE 3.4. Si k est un corps de caractéristique nulle, ou bien un
corps fini, et Klk une extension de corps, alors ['extension des scalaires
i: R, (GL,) —» Rg(GL,) est injective.

Preuve. Soient E, E’ deux k (GL,)-comodules simples non isomorphes.
Au moyen de I’isomorphisme classique:

K ®, Hom, (E,E") ~ Homg (KQ®,E, KQ,E')
On montre que
K ® Hom*¢I») (E, E") ~ Hom*(“') (K ®, E, K®,E")

donc le second membre est nul. D’autre part le comodule K ® £ est
semi-simple, car son anneau d’endomorphismes est K ® ,Dg, ou Dy est
le corps EndX(°L» (E), donc semi-simple ([4], I'un des deux corps est
séparable sur k en vertu des hypothéses). Alors, la formule Hom* (9%
(K®,E,K®,E) = 0 montre que K ® ,E et K® ,E’ sont sans facteur
simple commun. ]

LEMME 3.5. Si K est un corps infini, [’homomorphisme canonique défini
sous 2.2 1 ey : Rg(GL,)) — Ry (GL,, (K)) (envoyant le K (GL,)-comodule E
sur le K [GL, (K)|-module associé E) est injectif.

Preuve. En vertu du lemme 3.3, il s’agit de montrer que deux comodules
simples non isomorphes ont pour image deux modules simples non iso-
morphes. Comme GL, (K) est un ouvert dense de M, (K) (nxn-matrices)
pour la topologie de Zariski, le lemme suit du résultat classique: « Si la
fonction polynomiale associée & un polyndéme P (X, ..., X,) est identi-
quement nulle sur un anneau intégre infini, alors le polynéme P est
nul. » [

Remarques. (1) Pour un corps algébriquement clos, on peut parler du
groupe algébrique GL, (K) et de I’anneau R%? (GL, (K)) des représenta-
tions algébriques de GL, (K). Ce dernier coincide avec Ry (GL).

(2) En exploitant ce point de vue, J.-P. Serre [9] montre en particulier
que les homomorphismes d’extension des scalaires:

i: Ry (GL,) —» Rg(GL,) et i': Ry(GL,xGL,) > Ro(GL,x GL,)
sont des isomorphismes (il établit en premier lieu une suite exacte

J

D, RFP(H) = Rz (H) » Ry (H) - 0
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[9, théoréme 1] pour toute algébre de Hopf H, puis il montre la surjectivité
des homomorphismes de décomposition

d,: Ro(GL,) > Rg (GL,) et d,: Ro(GL,xGL,) — Ry (GL,x GL,).

Par construction j,od, = 0, il s’ensuit que i et i’ sont des isomorphismes
[9, théoremes 3 et 5)).

LEMME 3.6. Soit p un nombre premier. L’ homomorphisme canonique

€p - RFP (GL,) = [ ]m=t RFpm (GL, (Fpm))
est injectif.

Preuve. Suit du résultat classique « Si la fonction polynomiale associée
a un polynéme P (X, ..., X,) de degré g est identiquement nulle sur un
corps contenant au moins ¢ + 1 éléments, alors P est identiquement
nul ». ]

Si 4 est un anneau de caractéristique p > 0, on désignera par Frob
1’homomorphisme de Frobenius de A défini par x — x”.

COROLLAIRE 3.7. Si A est un anneau de caractéristique p > 0, alors
y? = Frob, : R,(G) = R,(G).

(R, (G) désigne le groupe de Grothendieck de la catégorie £S5 des AG-
modules A-libres de type fini.)

Preuve. Comme tout objet ¥ de £ est de la forme V = p* (4%), il
suffit par naturalit¢ de montrer:

Y [Aia] = Frob, [Ai] € R,(GL,(4).

Comme [A4;;] est dans l'image de I’homomorphisme canonique e, :
R, (GL,) —» R, (GL, (A4)) de pré-A-anneaux, il suffit de montrer

y* = Frob, : R,(GL,) - R,(GL,).
Par le lemme 3.6, on se réduit encore a montrer
P __ ‘
'7” - FrOb* . RFpm (GLn (Fpm)) - RFpm (GLn (Fpm)) .

Cette derniére égalité s’obtient facilement a partir de [7].

S
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