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Ainsi, la généralisation des modules libres aux modules projectifs se
traduit par une structure supplémentaire: 'action de K, (4) sur I’'idéal
d’augmentation.

(2) Si V est une représentation de G sur 4 de forme matricielle p : G
— GL, (4), on peut considérer p* : R, (GL, (4)) = R, (G) et alors

[V] = p*[4i]

ou [4%] est la classe de la représentation id : GL, (4) —» GL, (4). De ce
point de vue, les groupes GL, (4) jouent un réle universel pour les repré-
sentations. Nous allons donc étudier maintenant un type particulier de
représentations de GL, (A4).

2. REPRESENTATIONS POLYNOMIALES DE GL,

Soit A un anneau commutatif avec unité. On considére le foncteur
GL,: olg ,—%r; A’ GL,(A")

de la catégorie des A-algébres commutatives avec unité dans celle des
groupes. Une représentation polynomiale de GL, sur I’anneau A est une
transformation naturelle de foncteurs

p: GL, - GL,,

déterminée par une famille de polynomes p;; (X iy, ..., X det (X)71)
(1 <i,j < m)a coefficients dans 4 comme suit:

Pa - GLn (A/) - GLm (A,)
est définie par les fonctions polynomiales p;; sur A’

Exemple. La puissance extérieure A* : GL, — GL, est une représenta-
tion polynomiale sur Z définie par la fonction polynomiale

p(Xi1, X12, X510, X00) = X141 X, — X15X,, .
Comme GL, (A4) est un groupe algébrique affine, son algébre affine
A(GL,) = A[X 1, ..., X, det (X)71]

(algébre des fonctions polynomiales sur GL,) est une algébre de Hopf
(la multiplication GL, x GL, — GL, induit la comultiplication

A(GL,) » A(GL,xGL,) = A(GL,) ® A(GL)).
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Soit £ un A-module. Une structure de 4 (GL,)-comodule sur E est la
donnée d’'un homomorphisme A4-linéaire

ds: E—> A(GL) ® ,E

vérifiant les axiomes duaux d’une structure de module. Un homomorphisme
de A (GL,)-comodules f : E — E’ est une application A-linéaire compa-
tible avec d et dg.. L’ensemble

Hom“(¢En) (E| E)

des homomorphismes de A (GL,)-comodules est donc un sous-ensemble
de Hom, (£, E') des applications A-linéaires. On montre alors que la
catégorie des A4 (GL,)-comodules est abélienne [9] (pour Dexistence de
noyaux, on utilise le fait que A4 (GL,) est un A-module plat, ce qui assure
que si ECE’, alors A (GL,) ® EC A (GL,) ® E').

LEMME 2.1. La donnée d’une classe de conjugaison par des matrices de
GL,, (A) d’une représentation polynomiale p : GL, — GL,, est équivalente
a celle d’une classe d’isomorphisme de A (GL,)-comodules A-libres de
rang m.

Preuve. La correspondance est donnée par la formule

dg(e) = Zj=ml Pji (X11> o vy K g T (X)_l) X e;
ou { ey, ..., e, } est une A-base de A™. ]

Soit 2, (GL,) la sous-catégorie pleine de la catégorie des A (GL,)-
comodules formée des comodules qui sont projectifs de type fini en tant que
A-modules (généralisation des représentations polynomiales de GL,).
On note alors R, (GL,) le groupe de Grothendieck de £, (GL,) (quotient
du groupe abélien libre sur les classes d’isomorphisme d’objets { £} de
2?4 (GL,) par les relations { E} = {E'} + { E”} associées aux suites
exactes 0 > E' - E - E” — 0. Le produit tensoriel sur A4 :(E,E’) — E
® LE’ muni de la structure de comodule

dE ®dE’ me® id
EQE —» A(GL)® A(GL,) ® EQE" —» A(GL) QEQ®E’
(ou m est la multiplication de I’algeébre de Hopf A4 (GL,) induite par la
diagonale 4 : GL, — GL, X GL,) préserve les suites exactes de A-modules
projectifs et induit une structure d’anneau commutatif avec unité sur
R, (GL,) (I'unité est la classe du A (GL,)-comodule 4 défini par d, (1)

- 1® 1)
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2.2. La donnée d’'un 4 (GL,)-comodule E fournit pour toute 4-algébre 4’
un A’ [GL, (4")]-module par:

v id

id ® d v
A'[GL, (4] ® 4E — > A'[GL,(A)] ® 44 (GL) ®E —» A’ ® 4E
ou év:A4'[GL,(4")] ® 44 (GL,) > A" est I'homomorphisme d’évalua-

tion. Par suite, on a des homomorphismes d’anneaux canoniques

eyt Ry(GL,) » Ry (GL,(A); Er>A4' ® 4E.

Remarque. D’une manicre générale, si H est une algebre de Hopf qui
est de plus un 4-module plat, on notera R, (H) le groupe de Grothendieck
de la catégorie 2, (H) des H-comodules qui sont projectifs de type fini
en tant que A-modules. Comme pour R, (GL,), on montre que R, (H)
est un anneau commutatif avec unité. Nous utiliserons les algébres de Hopf

A (Mn) = A {Xlla weiey Xnn}» A (Tn)
= A [XD eees Xn]a A (Mnx Mm) =4 [Xl 15 +oos Apps Yl 15 o0 Ymm] ’
dont les groupes de Grothendieck R, (H) s’interprétent comme repré-

sentations polynomiales de M, (n*xn matrices), T, (matrices diagonales)
et M, X M,, respectivement.

3. LE PRE-A-ANNEAU R, (H)

Définition 3.1 [11, [2]. Un pré-i-anneau (A-ring) R est un anneau com-
mutatif avec unité, muni d’une suite d’opérations { A" }uso Vérifiant les
propriétés suivantes :

i) A°x) =1etA(x) =x

() A*(c+p) = Yimo A1 (x) - AF7H(p).
En introduisant les séries formelles 4, (x) = Y 2,4 (x) t' et

Vo) = =12 (log 4,(9) = — 1 (540 )
dt dt
on définit une suite d’opérations * : R > R, k > 0 (opérations d’Adams )
par
Vo (x) = i (= DY (%) 7.
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