Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 26 (1980)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: OPÉRATIONS D'ADAMS ET REPRÉSENTATIONS DE GROUPES

Autor: Kratzer, Ch.

Kapitel: 1. L'Anneau \$R_A(G)\$

DOI: https://doi.org/10.5169/seals-51063

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

OPÉRATIONS D'ADAMS ET REPRÉSENTATIONS DE GROUPES

par Ch. KRATZER

Si A est un anneau commutatif, on connaît une certaine famille d'opérations ψ^k , k entier, agissant sur l'anneau R_A (G) des représentations A-linéaires d'un groupe G quelconque, analogues aux opérations introduites par F. Adams en K-théorie topologique. Dans le cadre des représentations de groupes, ces opérations ont été introduites par F. Swan [10]; la technique (« splitting principle ») utilisée par ce dernier comme par d'autres [3], [8], est inspirée de la topologie et adaptée au cadre des représentations par le biais de la géométrie algébrique. Nous la présentons ici du point de vue universel en étudiant les représentations polynomiales de GL_n , ce qui permet d'établir en particulier un « splitting principle », de manière très directe à partir de [9]. L'apport de géométrique algébrique est alors la « connaissance » des représentations du groupe algébrique $GL_n(K)$ sur un corps K algébriquement clos.

On peut enfin remarquer que lorsque A est un corps et G un groupe fini, M. Kervaire [7] a obtenu des propriétés supplémentaires concernant les opérations ψ^k par des techniques élémentaires, notamment l'extension de corps et la restriction aux sous-groupes.

1. L'Anneau $R_A(G)$

Soient A un anneau commutatif avec unité et G un groupe quelconque (non nécessairement fini). On désigne par AG l'algèbre du groupe G, c'est-à-dire le A-module libre de base G, muni de la multiplication induite par celle de G. Une représentation de G sur G est une classe d'isomorphisme de G-modules (à gauche), G-libres de type fini. Le choix d'une G-base de G-permet d'associer à la classe d'isomorphisme G un homomorphisme G un homomorphisme G un ique à conjugaison près. On dit que G est la forme matricielle de la représentation. Il est utile de généraliser un peu le concept de représentation et de considérer la sous-catégorie pleine G de la catégorie abélienne des G-modules formée des modules qui sont projectifs de type fini en tant que G-modules. On notera G le groupe de G-orthen-

dieck de \mathscr{P}_A^G défini comme le quotient du groupe abélien libre L sur les classes d'isomorphisme $\{V\}$ d'objets de \mathscr{P}_A^G par les relations $\{V\} = \{V'\} + \{V''\}$ associées aux suites exactes $0 \to V' \to V \to V'' \to 0$. On remarque que le produit tensoriel sur $A: (V, V') \to V \otimes_A V'$, muni de l'action diagonale du groupe G préserve les suites exactes de A-modules projectifs et induit par conséquent une structure d'anneau commutatif avec unité sur $R_A(G)$.

Si $\rho:G\to G'$ est un homomorphisme de groupes, ρ s'étend en un homomorphisme d'algèbre $\rho:AG\to AG'$, et tout AG'-module V devient un AG-module par $\lambda\cdot v=\rho(\lambda)\cdot v$. On en déduit un homomorphisme d'anneaux:

$$\rho^*: R_A(G') \to R_A(G)$$

dit de restriction. De même, si $f: A \to A'$ est un homomorphisme d'anneaux, tout AG-module V fournit un A'G-module $A' \otimes_A V$. On obtient ainsi un homomorphisme d'anneaux:

$$f_*: R_A(G) \to R_{A'}(G)$$

dit d'extension des scalaires. En d'autres termes, $R_A(G)$ est un foncteur contravariant en G et covariant en A.

On définit encore $IR_A(G)$ l'idéal d'augmentation de $R_A(G)$, comme le noyau de l'homomorphisme de restriction $R_A(G) \to R_A(1) = K_0(A)$ (scindé par l'homomorphisme de restriction $\varepsilon: R_A(1) \to R_A(G)$). $IR_A(G)$ est muni d'une structure de $K_0(A)$ -algèbre via ε .

Remarques. (1) Si $R_A'(G)$ désigne le groupe de Grothendieck de la catégorie \mathcal{L}_A^G des AG-modules A-libres de type fini, l'inclusion de catégories $\mathcal{L}_A^G \subset \mathcal{P}_A^G$ induit un monomorphisme sur les groupes de Grothendieck

$$i: R'_A(G) \to R_A(G)$$

(Comme les modules projectifs sont facteurs directs des modules libres, l'assertion suit du critère [6, lemma 1]:

[M] = [N] dans $R_A(G)$ (resp. $R'_A(G)$) \Leftrightarrow il existe $U, V, W \in \mathcal{P}_A^G$ (resp. \mathcal{L}_A^G) et deux suites exactes

$$0 \to U \to M \oplus W \to V \to 0$$
 et $0 \to U \to N \oplus W \to V \to 0$.

On vérifie ensuite aisément que i induit un isomorphisme sur les idéaux d'augmentation

$$i: IR'_{A}(G) \xrightarrow{\sim} IR_{A}(G)$$
.

Ainsi, la généralisation des modules libres aux modules projectifs se traduit par une structure supplémentaire: l'action de $K_0(A)$ sur l'idéal d'augmentation.

(2) Si V est une représentation de G sur A de forme matricielle $\rho: G \to GL_n(A)$, on peut considérer $\rho^*: R_A(GL_n(A)) \to R_A(G)$ et alors

$$[V] = \rho^* [A_{id}^n]$$

où $[A_{id}^n]$ est la classe de la représentation $id: GL_n(A) \to GL_n(A)$. De ce point de vue, les groupes $GL_n(A)$ jouent un rôle universel pour les représentations. Nous allons donc étudier maintenant un type particulier de représentations de $GL_n(A)$.

2. Représentations polynomiales de GL_n

Soit A un anneau commutatif avec unité. On considère le foncteur

$$GL_n: \mathscr{A}lg_A \to \mathscr{G}r; A' \mapsto GL_n(A')$$

de la catégorie des A-algèbres commutatives avec unité dans celle des groupes. Une représentation polynomiale de GL_n sur l'anneau A est une transformation naturelle de foncteurs

$$\rho: GL_n \to GL_m$$

déterminée par une famille de polynômes $\rho_{ij}(X_{11}, ..., X_{nn}, \det(X)^{-1})$ $(1 \le i, j \le m)$ à coefficients dans A comme suit:

$$\rho_{A'}: GL_n(A') \to GL_m(A')$$

est définie par les fonctions polynomiales ρ_{ij} sur A'.

Exemple. La puissance extérieure $\lambda^2:GL_2\to GL_1$ est une représentation polynomiale sur ${\bf Z}$ définie par la fonction polynomiale

$$\rho(X_{11}, X_{12}, X_{21}, X_{22}) = X_{11}X_{22} - X_{12}X_{21}.$$

Comme $GL_n(A)$ est un groupe algébrique affine, son algèbre affine

$$A(GL_n) = A[X_{11}, ..., X_{nn}, \det(X)^{-1}]$$

(algèbre des fonctions polynomiales sur GL_n) est une algèbre de Hopf (la multiplication $GL_n \times GL_n \to GL_n$ induit la comultiplication

$$A(GL_n) \to A(GL_n \times GL_n) = A(GL_n) \otimes A(GL_n)$$
.