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OPERATIONS D’ADAMS ET REPRESENTATIONS DE GROUPES

par Ch. KRATZER

Si A est un anneau commutatif, on connait une certaine famille d’opéra-
tionsy/*, k entier, agissant sur ’anneau R, (G) des représentations 4-linéaires
d’un groupe G quelconque, analogues aux opérations introduites par
F. Adams en K-théorie topologique. Dans le cadre des représentations de
groupes, ces opérations ont été introduites par R. Swan [10]; la technique
(« splitting principle ») utilisée par ce dernier comme par d’autres [3], [8],
est inspirée de la topologie et adaptée au cadre des représentations par le
biais de la géométrie algébrique. Nous la présentons ici du point de vue
universel en étudiant les représentations polynomiales de GL,, ce qui
permet d’établir en particulier un « splitting principle », de maniere tres
directe a partir de [9]. L’apport de géométrique algébrique est alors la
« connaissance » des représentations du groupe algébrique GL, (K) sur
un corps K algébriquement clos.

On peut enfin remarquer que lorsque 4 est un corps et G un groupe
fini, M. Kervaire [7] a obtenu des propriétés supplémentaires concernant
les opérations y/* par des techniques élémentaires, notamment 1’extension
de corps et la restriction aux sous-groupes.

1. ’ANNEAU R, (G)

Soient 4 un anneau commutatif avec unité et G un groupe quelconque
(non nécessairement fini). On désigne par AG 'algébre du groupe G, c’est-
a-dire le 4-module libre de base G, muni de la multiplication induite par
celle de G. Une représentation de G sur A est une classe d’isomorphisme de
AG-modules (a gauche), A-libres de type fini. Le choix d’une 4-base de V'
permet d’associer & la classe d’isomorphisme { ¥V} un homomorphisme
p:G— GL,(4) unique a conjugaison prés. On dit que p est la forme
matricielle de la représentation. Il est utile de généraliser un peu le concept
de représentation et de considérer la sous-catégorie pleine 29 de la caté-
gorie abélienne des AG-modules formée des modules qui sont projectifs
de type fini en tant que A-modules. On notera R, (G) le groupe de Grothen-
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dieck de 29 défini comme le quotient du groupe abélien libre L sur les
classes d’isomorphisme { V' } d’objets de 2§ par les relations { V' } = { V' }
+ { V" } associées aux suites exactes 0 - V' — V' — V" — 0. On remarque
que le produit tensoriel sur A4 :(V, V') >V ® ,V’, muni de l’action
diagonale du groupe G préserve les suites exactes de 4A-modules projectifs
et induit par conséquent une structure d’anneau commutatif avec unité
sur R, (G).

Sip : G — G’ est un homomorphisme de groupes, p s’étend en un homo-
morphisme d’algebre p : AG - AG’, et tout AG'-module V devient un
AG-module par A v = p(4) - v. On en déduit un homomorphisme d’an-
neaux:

p* i Ry (G) - R, (G)

dit de restriction. De méme, si f: A — A" est un homomorphisme
d’anneaux, tout AG-module V fournit un 4’G-module 4" ® ,V. On obtient
ainsi un homomorphisme d’anneaux:

[« Ry(G) = Ry (G)

dit d’extension des scalaires. En d’autres termes, R, (G) est un foncteur
contravariant en G et covariant en A.

On définit encore IR, (G) Vidéal d’augmentation de R, (G), comme le
noyau de I’homomorphisme de restriction R, (G) —» R, (1) = K, (A4)
(scindé par ’homomorphisme de restriction ¢ : R, (1) - R, (G)). IR, (G)
est muni d’une structure de K, (4)-algebre via .

Remarques. (1) Si R, (G) désigne le groupe de Grothendieck de Ila
catégorie ZG des AG-modules A-libres de type fini, 'inclusion de caté-
gories £ § =, 29 induit un monomorphisme sur les groupes de Gro-
thendieck

i: R,(G) - R,(G)

(Comme les modules projectifs sont facteurs directs des modules libres,
I’assertion suit du criteére [6, lemma 1]:

[M] = [N] dans R, (G) (resp. R,(G)) = il existe U, V, We ?§
(resp. £ 9) et deux suites exactes

O-U-> MW >V -0 et O-U->NeW->V ->0).

On vérifie ensuite aisément que i induit un isomorphisme sur les idéaux

d’augmentation
i: IR, (G) S IR, (G).
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Ainsi, la généralisation des modules libres aux modules projectifs se
traduit par une structure supplémentaire: 'action de K, (4) sur I’'idéal
d’augmentation.

(2) Si V est une représentation de G sur 4 de forme matricielle p : G
— GL, (4), on peut considérer p* : R, (GL, (4)) = R, (G) et alors

[V] = p*[4i]

ou [4%] est la classe de la représentation id : GL, (4) —» GL, (4). De ce
point de vue, les groupes GL, (4) jouent un réle universel pour les repré-
sentations. Nous allons donc étudier maintenant un type particulier de
représentations de GL, (A4).

2. REPRESENTATIONS POLYNOMIALES DE GL,

Soit A un anneau commutatif avec unité. On considére le foncteur
GL,: olg ,—%r; A’ GL,(A")

de la catégorie des A-algébres commutatives avec unité dans celle des
groupes. Une représentation polynomiale de GL, sur I’anneau A est une
transformation naturelle de foncteurs

p: GL, - GL,,

déterminée par une famille de polynomes p;; (X iy, ..., X det (X)71)
(1 <i,j < m)a coefficients dans 4 comme suit:

Pa - GLn (A/) - GLm (A,)
est définie par les fonctions polynomiales p;; sur A’

Exemple. La puissance extérieure A* : GL, — GL, est une représenta-
tion polynomiale sur Z définie par la fonction polynomiale

p(Xi1, X12, X510, X00) = X141 X, — X15X,, .
Comme GL, (A4) est un groupe algébrique affine, son algébre affine
A(GL,) = A[X 1, ..., X, det (X)71]

(algébre des fonctions polynomiales sur GL,) est une algébre de Hopf
(la multiplication GL, x GL, — GL, induit la comultiplication

A(GL,) » A(GL,xGL,) = A(GL,) ® A(GL)).
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