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OPERATIONS D’ADAMS ET REPRESENTATIONS DE GROUPES

par Ch. KRATZER

Si A est un anneau commutatif, on connait une certaine famille d’opéra-
tionsy/*, k entier, agissant sur ’anneau R, (G) des représentations 4-linéaires
d’un groupe G quelconque, analogues aux opérations introduites par
F. Adams en K-théorie topologique. Dans le cadre des représentations de
groupes, ces opérations ont été introduites par R. Swan [10]; la technique
(« splitting principle ») utilisée par ce dernier comme par d’autres [3], [8],
est inspirée de la topologie et adaptée au cadre des représentations par le
biais de la géométrie algébrique. Nous la présentons ici du point de vue
universel en étudiant les représentations polynomiales de GL,, ce qui
permet d’établir en particulier un « splitting principle », de maniere tres
directe a partir de [9]. L’apport de géométrique algébrique est alors la
« connaissance » des représentations du groupe algébrique GL, (K) sur
un corps K algébriquement clos.

On peut enfin remarquer que lorsque 4 est un corps et G un groupe
fini, M. Kervaire [7] a obtenu des propriétés supplémentaires concernant
les opérations y/* par des techniques élémentaires, notamment 1’extension
de corps et la restriction aux sous-groupes.

1. ’ANNEAU R, (G)

Soient 4 un anneau commutatif avec unité et G un groupe quelconque
(non nécessairement fini). On désigne par AG 'algébre du groupe G, c’est-
a-dire le 4-module libre de base G, muni de la multiplication induite par
celle de G. Une représentation de G sur A est une classe d’isomorphisme de
AG-modules (a gauche), A-libres de type fini. Le choix d’une 4-base de V'
permet d’associer & la classe d’isomorphisme { ¥V} un homomorphisme
p:G— GL,(4) unique a conjugaison prés. On dit que p est la forme
matricielle de la représentation. Il est utile de généraliser un peu le concept
de représentation et de considérer la sous-catégorie pleine 29 de la caté-
gorie abélienne des AG-modules formée des modules qui sont projectifs
de type fini en tant que A-modules. On notera R, (G) le groupe de Grothen-
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dieck de 29 défini comme le quotient du groupe abélien libre L sur les
classes d’isomorphisme { V' } d’objets de 2§ par les relations { V' } = { V' }
+ { V" } associées aux suites exactes 0 - V' — V' — V" — 0. On remarque
que le produit tensoriel sur A4 :(V, V') >V ® ,V’, muni de l’action
diagonale du groupe G préserve les suites exactes de 4A-modules projectifs
et induit par conséquent une structure d’anneau commutatif avec unité
sur R, (G).

Sip : G — G’ est un homomorphisme de groupes, p s’étend en un homo-
morphisme d’algebre p : AG - AG’, et tout AG'-module V devient un
AG-module par A v = p(4) - v. On en déduit un homomorphisme d’an-
neaux:

p* i Ry (G) - R, (G)

dit de restriction. De méme, si f: A — A" est un homomorphisme
d’anneaux, tout AG-module V fournit un 4’G-module 4" ® ,V. On obtient
ainsi un homomorphisme d’anneaux:

[« Ry(G) = Ry (G)

dit d’extension des scalaires. En d’autres termes, R, (G) est un foncteur
contravariant en G et covariant en A.

On définit encore IR, (G) Vidéal d’augmentation de R, (G), comme le
noyau de I’homomorphisme de restriction R, (G) —» R, (1) = K, (A4)
(scindé par ’homomorphisme de restriction ¢ : R, (1) - R, (G)). IR, (G)
est muni d’une structure de K, (4)-algebre via .

Remarques. (1) Si R, (G) désigne le groupe de Grothendieck de Ila
catégorie ZG des AG-modules A-libres de type fini, 'inclusion de caté-
gories £ § =, 29 induit un monomorphisme sur les groupes de Gro-
thendieck

i: R,(G) - R,(G)

(Comme les modules projectifs sont facteurs directs des modules libres,
I’assertion suit du criteére [6, lemma 1]:

[M] = [N] dans R, (G) (resp. R,(G)) = il existe U, V, We ?§
(resp. £ 9) et deux suites exactes

O-U-> MW >V -0 et O-U->NeW->V ->0).

On vérifie ensuite aisément que i induit un isomorphisme sur les idéaux

d’augmentation
i: IR, (G) S IR, (G).
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Ainsi, la généralisation des modules libres aux modules projectifs se
traduit par une structure supplémentaire: 'action de K, (4) sur I’'idéal
d’augmentation.

(2) Si V est une représentation de G sur 4 de forme matricielle p : G
— GL, (4), on peut considérer p* : R, (GL, (4)) = R, (G) et alors

[V] = p*[4i]

ou [4%] est la classe de la représentation id : GL, (4) —» GL, (4). De ce
point de vue, les groupes GL, (4) jouent un réle universel pour les repré-
sentations. Nous allons donc étudier maintenant un type particulier de
représentations de GL, (A4).

2. REPRESENTATIONS POLYNOMIALES DE GL,

Soit A un anneau commutatif avec unité. On considére le foncteur
GL,: olg ,—%r; A’ GL,(A")

de la catégorie des A-algébres commutatives avec unité dans celle des
groupes. Une représentation polynomiale de GL, sur I’anneau A est une
transformation naturelle de foncteurs

p: GL, - GL,,

déterminée par une famille de polynomes p;; (X iy, ..., X det (X)71)
(1 <i,j < m)a coefficients dans 4 comme suit:

Pa - GLn (A/) - GLm (A,)
est définie par les fonctions polynomiales p;; sur A’

Exemple. La puissance extérieure A* : GL, — GL, est une représenta-
tion polynomiale sur Z définie par la fonction polynomiale

p(Xi1, X12, X510, X00) = X141 X, — X15X,, .
Comme GL, (A4) est un groupe algébrique affine, son algébre affine
A(GL,) = A[X 1, ..., X, det (X)71]

(algébre des fonctions polynomiales sur GL,) est une algébre de Hopf
(la multiplication GL, x GL, — GL, induit la comultiplication

A(GL,) » A(GL,xGL,) = A(GL,) ® A(GL)).
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Soit £ un A-module. Une structure de 4 (GL,)-comodule sur E est la
donnée d’'un homomorphisme A4-linéaire

ds: E—> A(GL) ® ,E

vérifiant les axiomes duaux d’une structure de module. Un homomorphisme
de A (GL,)-comodules f : E — E’ est une application A-linéaire compa-
tible avec d et dg.. L’ensemble

Hom“(¢En) (E| E)

des homomorphismes de A (GL,)-comodules est donc un sous-ensemble
de Hom, (£, E') des applications A-linéaires. On montre alors que la
catégorie des A4 (GL,)-comodules est abélienne [9] (pour Dexistence de
noyaux, on utilise le fait que A4 (GL,) est un A-module plat, ce qui assure
que si ECE’, alors A (GL,) ® EC A (GL,) ® E').

LEMME 2.1. La donnée d’une classe de conjugaison par des matrices de
GL,, (A) d’une représentation polynomiale p : GL, — GL,, est équivalente
a celle d’une classe d’isomorphisme de A (GL,)-comodules A-libres de
rang m.

Preuve. La correspondance est donnée par la formule

dg(e) = Zj=ml Pji (X11> o vy K g T (X)_l) X e;
ou { ey, ..., e, } est une A-base de A™. ]

Soit 2, (GL,) la sous-catégorie pleine de la catégorie des A (GL,)-
comodules formée des comodules qui sont projectifs de type fini en tant que
A-modules (généralisation des représentations polynomiales de GL,).
On note alors R, (GL,) le groupe de Grothendieck de £, (GL,) (quotient
du groupe abélien libre sur les classes d’isomorphisme d’objets { £} de
2?4 (GL,) par les relations { E} = {E'} + { E”} associées aux suites
exactes 0 > E' - E - E” — 0. Le produit tensoriel sur A4 :(E,E’) — E
® LE’ muni de la structure de comodule

dE ®dE’ me® id
EQE —» A(GL)® A(GL,) ® EQE" —» A(GL) QEQ®E’
(ou m est la multiplication de I’algeébre de Hopf A4 (GL,) induite par la
diagonale 4 : GL, — GL, X GL,) préserve les suites exactes de A-modules
projectifs et induit une structure d’anneau commutatif avec unité sur
R, (GL,) (I'unité est la classe du A (GL,)-comodule 4 défini par d, (1)

- 1® 1)
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2.2. La donnée d’'un 4 (GL,)-comodule E fournit pour toute 4-algébre 4’
un A’ [GL, (4")]-module par:

v id

id ® d v
A'[GL, (4] ® 4E — > A'[GL,(A)] ® 44 (GL) ®E —» A’ ® 4E
ou év:A4'[GL,(4")] ® 44 (GL,) > A" est I'homomorphisme d’évalua-

tion. Par suite, on a des homomorphismes d’anneaux canoniques

eyt Ry(GL,) » Ry (GL,(A); Er>A4' ® 4E.

Remarque. D’une manicre générale, si H est une algebre de Hopf qui
est de plus un 4-module plat, on notera R, (H) le groupe de Grothendieck
de la catégorie 2, (H) des H-comodules qui sont projectifs de type fini
en tant que A-modules. Comme pour R, (GL,), on montre que R, (H)
est un anneau commutatif avec unité. Nous utiliserons les algébres de Hopf

A (Mn) = A {Xlla weiey Xnn}» A (Tn)
= A [XD eees Xn]a A (Mnx Mm) =4 [Xl 15 +oos Apps Yl 15 o0 Ymm] ’
dont les groupes de Grothendieck R, (H) s’interprétent comme repré-

sentations polynomiales de M, (n*xn matrices), T, (matrices diagonales)
et M, X M,, respectivement.

3. LE PRE-A-ANNEAU R, (H)

Définition 3.1 [11, [2]. Un pré-i-anneau (A-ring) R est un anneau com-
mutatif avec unité, muni d’une suite d’opérations { A" }uso Vérifiant les
propriétés suivantes :

i) A°x) =1etA(x) =x

() A*(c+p) = Yimo A1 (x) - AF7H(p).
En introduisant les séries formelles 4, (x) = Y 2,4 (x) t' et

Vo) = =12 (log 4,(9) = — 1 (540 )
dt dt
on définit une suite d’opérations * : R > R, k > 0 (opérations d’Adams )
par
Vo (x) = i (= DY (%) 7.

L’Enseignement mathém., t. XXVI, fasc. 1-2. 10
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On vérifie immédiatement que les opérations y/* sont des endomorphismes
de groupe et que Y' (x) = x. D’autre part, on tire de la définition la for-
mule [1]:

(9 WF =P L (=D T (D = 0

qui peut servir de définition par récurrence des opérations d’Adams. Si x
est de rang 1, c’est-a-dire 4, (x) = 1 + xt, on vérifie par induction sur &
a I’aide de la formule (*) que y* (x) = x*.

Si H est une A-algebre de Hopf qui est de plus un A-module plat, nous
allons définir des opérations A* sur R, (H). Soient Ee #,(H) et k > 1
entier. On considére la k-iéme puissance tensorielle E* = E® 4 ... ® LE
(k facteurs) munie de la structure de H-comodule

dE ® ... ® dE m g id
- > H®. HKER..QRE — H

RER...RQE

ou m est la multiplication de k facteurs dans I’algébre de Hopf H (si H
= A (GL,), m est induite par la diagonale 4 : GL, - GL, X ... X GL)).
Le sous-module de E* engendré par les x; ® ... ® x;, ou x; = X; pour un
i #j, est muni d’une structure de H-sous-comodule de E*: si dg (x)
=>a®x, m [(dy®@dp) (x®@x)] = m [Ca®x)® Q@ x)] = et
® x; @ Xx; + ), 20,¢s ® (x,®x,+x,®x,). Par passage au quotient, on
obtient un H-comodule A*E (k-iéme puissance extérieure).

On convient que A°E = A (H-comodule trivial défini pard, (1) = 1®1).
On vérifie que A*Ee 2, (H) au moyen de la formule classique sur les
A-modules

E®..QFE

ME@F) ~ @i 'E @ ¥ 'F

car il est clair que les puissances extérieures de modules libres sont des

modules libres.
Sil + R, (H) [[t]] * désigne le groupe multiplicatif des séries formelles
sur R, (H) de terme constant 1, il s’avere que la formule

'1t { E} - Zi-i—oo [;LLE:] ti
sur les générateurs de R, (H) induit un homomorphisme de groupes
At Ry(H) -1+ RyH)[[]]"

et par suite une structure de pré-A-anneau sur R, (H). Le point essentiel
de la démonstration est le
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LEMME 3.2. Si 0>V > W > V' —> 0 est exacte dans P, (H), alors
[Fw] = Yok, [AV]-[A'V'] dans R,(H)
¢'est-d-dire A, : Ry (H) =1+ R,(H) [[t]]" est bien définie.
Preuve. Soit f : W™ — A"W la projection canonique. En tensorisant

la suite 0 = V' —» W — V' — 0 suffisamment de fois par V' et W, on obtient
une filtration

OCV"CV™l@WC..CVIQ W iC..CW".

L’image par f de cette filtration f (V'Q W™~ %) = W, est une filtration
du H-comodule A"W (W, coincide avec le sous-module engendré par
les x; A ... A X, ayant au moins i facteurs dans ). On va montrer d’une
part que

WIW, 1 ~ AV ® A" 'V’ (en tant que H-comodules)

et d’autre part que les W, sont des objets de 2, (H). Alors, par définition
du produit dans R, (H), on a

[AV]-[A"V'] = [AV 4" 7V']
et d’autre part, on aura (en posant W, ,;=0)
[/lmW] = Zi;no [Wi/Wi+1] .

Le lemme suit alors directement de ces considérations. Pour montrer
Pisomorphisme W /Wi, ~ AV ® A" 'V’, on considére le diagramme

i m—i f
rew >~ Wi ol p; est induit
l ; l par la projection
. . f’ ¥ p:W—V,
vie vt > Wi Wi
/

N/

/liV ® lm-—i V/

Il est clair que f induit les homomorphismes de H-comodules f’ et £”.
Pour vérifier que f” est un isomorphisme, il suffit de vérifier que f” est
un isomorphisme de A4-modules. Mais, en tant que A-modules, W ~ V
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@V’, donc A"W ~ @ LAV ® A"V, et via cet isomorphisme, W,/ W, ,
s’identifie a A'V @ A"V,
Enfin, les suites exactes

O Wiy > Wi Wi W,y -0

montrent par induction que les W, sont A-projectifs de type fini pour
i=20,1,..,m+1. ]

On déduit immédiatement du lemme 3.2 que les opérations A* définissent
une structure de pré-A-anneau sur R, (H) (donc en particulier sur R, (GL,),
Ry (M), Ry (T,), Ry (M, % M,) etc.).

Remarques. (1) En suivant exactement la méme démarche, on munit
les anneaux R, (G) d’une structure de pré-A-anneau (A* est la k-iéme puis-
sance extérieure munie de ’action diagonale de G), naturelle vis-a-vis des
homomorphismes de restriction et d’extension des scalaires, et compatibles
avec les homomorphismes canoniques définis sous 2.2

eA: . RA (GLn) —> RA' (GLn (A,))
(2) Le dual V* = Hom, (V, A), muni de ’action de G définie par
(g f)x) = f(g™" x)

induit une involution de pré-A-anneau sur R, (G). On en déduit des opéra-
tions d’Adams d’indice négatif

YRR = PR = (PF()*, k> 0.

Ces opérations vérifient aussi la condition ¥ ™% [P] = [P]7%, k > O sur les
éléments de rang 1 (pour autant que la notation [P]~! ait un sens, c’est-
a-dire [P] inversible), ce qui justifie leur appellation.

On dit qu’un H-comodule E # 0 est simple s’il ne possede pas de sous-
comodule propre; E est dit semi-simple s’il est somme directe de sous-
comodules simples.

LEMME 3.3. Si F est un corps, le groupe de Grothendieck Ry (H)
s ’identifie au groupe abélien libre sur [’ensemble des classes d’isomorphisme
de H-comodules simples.

Preuve. Comme les espaces vectoriels de dimension finie sont de lon-
gueur finie, tout objet de Z (H) est a fortiori de longueur finie. Main-
tenant, comme la catégorie Z5 (H) est abélienne, le théoréme de Jordan-
Holder [5] s’applique et le lemme en résulte.

|
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COROLLAIRE 3.4. Si k est un corps de caractéristique nulle, ou bien un
corps fini, et Klk une extension de corps, alors ['extension des scalaires
i: R, (GL,) —» Rg(GL,) est injective.

Preuve. Soient E, E’ deux k (GL,)-comodules simples non isomorphes.
Au moyen de I’isomorphisme classique:

K ®, Hom, (E,E") ~ Homg (KQ®,E, KQ,E')
On montre que
K ® Hom*¢I») (E, E") ~ Hom*(“') (K ®, E, K®,E")

donc le second membre est nul. D’autre part le comodule K ® £ est
semi-simple, car son anneau d’endomorphismes est K ® ,Dg, ou Dy est
le corps EndX(°L» (E), donc semi-simple ([4], I'un des deux corps est
séparable sur k en vertu des hypothéses). Alors, la formule Hom* (9%
(K®,E,K®,E) = 0 montre que K ® ,E et K® ,E’ sont sans facteur
simple commun. ]

LEMME 3.5. Si K est un corps infini, [’homomorphisme canonique défini
sous 2.2 1 ey : Rg(GL,)) — Ry (GL,, (K)) (envoyant le K (GL,)-comodule E
sur le K [GL, (K)|-module associé E) est injectif.

Preuve. En vertu du lemme 3.3, il s’agit de montrer que deux comodules
simples non isomorphes ont pour image deux modules simples non iso-
morphes. Comme GL, (K) est un ouvert dense de M, (K) (nxn-matrices)
pour la topologie de Zariski, le lemme suit du résultat classique: « Si la
fonction polynomiale associée & un polyndéme P (X, ..., X,) est identi-
quement nulle sur un anneau intégre infini, alors le polynéme P est
nul. » [

Remarques. (1) Pour un corps algébriquement clos, on peut parler du
groupe algébrique GL, (K) et de I’anneau R%? (GL, (K)) des représenta-
tions algébriques de GL, (K). Ce dernier coincide avec Ry (GL).

(2) En exploitant ce point de vue, J.-P. Serre [9] montre en particulier
que les homomorphismes d’extension des scalaires:

i: Ry (GL,) —» Rg(GL,) et i': Ry(GL,xGL,) > Ro(GL,x GL,)
sont des isomorphismes (il établit en premier lieu une suite exacte

J

D, RFP(H) = Rz (H) » Ry (H) - 0
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[9, théoréme 1] pour toute algébre de Hopf H, puis il montre la surjectivité
des homomorphismes de décomposition

d,: Ro(GL,) > Rg (GL,) et d,: Ro(GL,xGL,) — Ry (GL,x GL,).

Par construction j,od, = 0, il s’ensuit que i et i’ sont des isomorphismes
[9, théoremes 3 et 5)).

LEMME 3.6. Soit p un nombre premier. L’ homomorphisme canonique

€p - RFP (GL,) = [ ]m=t RFpm (GL, (Fpm))
est injectif.

Preuve. Suit du résultat classique « Si la fonction polynomiale associée
a un polynéme P (X, ..., X,) de degré g est identiquement nulle sur un
corps contenant au moins ¢ + 1 éléments, alors P est identiquement
nul ». ]

Si 4 est un anneau de caractéristique p > 0, on désignera par Frob
1’homomorphisme de Frobenius de A défini par x — x”.

COROLLAIRE 3.7. Si A est un anneau de caractéristique p > 0, alors
y? = Frob, : R,(G) = R,(G).

(R, (G) désigne le groupe de Grothendieck de la catégorie £S5 des AG-
modules A-libres de type fini.)

Preuve. Comme tout objet ¥ de £ est de la forme V = p* (4%), il
suffit par naturalit¢ de montrer:

Y [Aia] = Frob, [Ai] € R,(GL,(4).

Comme [A4;;] est dans l'image de I’homomorphisme canonique e, :
R, (GL,) —» R, (GL, (A4)) de pré-A-anneaux, il suffit de montrer

y* = Frob, : R,(GL,) - R,(GL,).
Par le lemme 3.6, on se réduit encore a montrer
P __ ‘
'7” - FrOb* . RFpm (GLn (Fpm)) - RFpm (GLn (Fpm)) .

Cette derniére égalité s’obtient facilement a partir de [7].

S
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4. LE THEOREME FONDAMENTAL (SPLITTING PRINCIPLE)

Définition 4.1 [11, [2]. Un pré-i-anneau R est un A-anneau (special
A-ring) si les A-opérations vérifient les propriétés supplémentaires [1], tri-
vialement vérifiées sur les sommes d’éléments de rang 1 :

@O A4 =1+1¢
(i) A" (xy) = P, (A1 (x), o0y A (x); A1 (), s A (1))
(i) A" (A" (x)) = P, (A1 (%), ooy A" (x))
ou P, et P,, sont des polynémes a coefficients entiers (donc définis par
leur valeur sur les sommes d’éléments de rang 1). Le sous-ensemble de R
vérifiant les formules (ii) et (iii) est fermé pour [’addition [1], [2]. Une

forme faible (équivalente si R est sans torsion en tant que groupe abélien)
de ces conditions s’exprime aisément en termes d’opérations d’Adams

[1], [2]:

(1) Y*: R— R est un endomorphisme d’anneau (et méme de A-
anneau)

(@) Yoyt = yloyt =y,

Nous désirons montrer que R, (G) est un A-anneau. Si P e 2§, P est
I'image d’un projecteur dans un AG-module V, A-libre de type fini

p>=p: V-V (Imp=P)

(par exemple V' = P @ Q ou Q est un inverse projectif de P muni de la
G-action triviale). En choisissant une A-base de V, p e M, (4) et, si ¢ : G
— GL, (A) est de la forme matricielle de V, on a

Vo= o* (4.
De méme, si P’ € 2%, on peut écrire
Pr=im(p :V'-V'), p?> =p et V' =c*(4").

Rappelons que R, (M,x M,) est le groupe de Grothendieck de la caté-
gorie Z,(M,*xM,) des A(M,x M,)-comodules A-projectifs de type
fini o 4 (M, xM,) = A[X;{, ..., Xp; Yigy ooy Y], Comme on Ia vu,
R, (M, > M,) est un pré-A-anneau. Le fait crucial pour la suite est le
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LEMME 4.2. (p, p’) définissent un homomorphisme de pré-A-anneaux
Ol(p, pl) : RZ (Mn X Mm) = RA (G)

tel que [P, [P']le a(p,p’) Ry (M,x M,).

Preuve. Si E est un Z (M, *x M,,)-comodule, on lui associe e, (E) = A
® zE muni de P’action canonique de M, (4) X M, (A) définie sous 2.2.
Ainsi le couple (p, p’) de matrices agit comme un projecteur sur e, (E).
Le A-module projectif image de ce projecteur (p,p’) e, (E) est muni
d’une action du groupe G car

a(g)'p=p-o(g et (g p =p o)
par hypothése. On pose alors

a(p,p)(E) = (p,p") " e4(E).

Maintenant, si 0 - E' > F - E” - 0 est exacte dans %, (M,X M,,),
alors

O0—(p,p)-e (E) = (p,p) e (E) > (p,p) ey (E") =0

est exacte dans 29 (en tant que A-module, e, (E) = e, (E") ® e, (E")
et 'action de (p,p’) sur e, (E') @ e, (E") est de la forme (‘PP (,*0).
Enfin, par fonctorialité des puissances extérieures,

(p,p) - A (e4(E)) = A ((p, p) - e4(E)).

Pour terminer, on remarque que [P] = o (p,p’) [Z;I] et [P'] = a(p,p’)
[Z,] ou Z,, (resp. Zy,) est le Z (M, x M,)-comodule défini par

dgn 22" > Z{X11, s Xos Vit oo Y]l ® Z"; 6> ;01X Qe
Py
(resp. dym: Z" > Z[ X115 s Xons Y15 oos Y] @ Z7;

Py

eir> >0 Y;®e)). ]

Si F est un corps, on peut, en vertu du lemme 3.3, identifier Rp (M, X M,,)
au sous-anneau de Ry (GL,*x GL,) engendré par les représentations ne
faisant intervenir ni det (X)™ !, ni det (Y)~*. Par [9, lemme 5], les repré-
sentations polynomiales simples de GL, X GL,, sur un corps sont classifiées
par les poids dominants. Comme la condition de se prolonger a M, X M,
(c’est-a-dire de ne faire intervenir ni det (X)™ !, ni det (¥)™ ') se lit sur
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les poids, la démonstration de J.-P. Serre [9, théoréme 5] passe au cas du
monoide M, x M, et livre que ’homomorphisme d’extension des scalaires:

i: RZ(M,,X Mm) ; RQ(Mn X Mm)

est un isomorphisme.

PROPOSITION 4.3. Le pré-A-anneau R, (M, % M,) est un A-anneau.

Preuve. Pour établir les formules (i) et (iii) de la définition 4.1, on
utilise un résultat de J.-P. Serre [9, théoreme 4]:

si R, (T,) désigne I'anneau des représentations polynomiales du tore T,
(matrices diagonales) d’algébre de Hopf 4 (T},) = 4 [X4, ..., X;], P’homo-
morphisme de restriction:

RQ (GLn X GLm) > RQ (Tn+m)
est injectif. Donc la composition
Ry (M, % M,) > Rg (M, x M,) >—> Rq(GL,X GL,) >—> Ro(Tsn)

est injective. Or les représentations polynomiales du tore 7, ,, sont sommes
de représentation de rang 1. ]

THEOREME 4.4. Le pré-i-anneau R, (G) est un A-anneau.

Preuve. 11 suffit d’établir les formules (i1) et (iii) de la définition 4.1
pour des classes [P] et [Q] d’objets de 2§ (générateurs additifs de R, (G)).
Par le lemme 4.2, on se réduit a vérifier ces formules dans R, (M, x M,,),
ce qu'on a fait a la proposition 4.3. -

PROPOSITION 4.5. Si A est un anneau de caractéristiqgue p > 0, alors
Y? = Frob, : R,(G) » R,(G)
Preuve. Comme au théoréme 4.4, il suffit de montrer que
P = Fl’Ob* . RFP (Mn) > RFP (M”) .

Or, RFp (M,) >—> RFp (GL,) est injective, et 1’égalité a déja été établie
sur RFp (GL,) au corollaire 3.7. ]
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