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OPÉRATIONS D'ADAMS ET REPRÉSENTATIONS DE GROUPES

par Ch. Kratzer

Si A est un anneau commutatif, on connaît une certaine famille d'opérations

\j/k, k entier, agissant sur l'anneau RA (G) des représentations -linéaires

d'un groupe G quelconque, analogues aux opérations introduites par
F. Adams en X-théorie topologique. Dans le cadre des représentations de

groupes, ces opérations ont été introduites par R. Swan [10]; la technique
(« splitting principle ») utilisée par ce dernier comme par d'autres [3], [8],

est inspirée de la topologie et adaptée au cadre des représentations par le

biais de la géométrie algébrique. Nous la présentons ici du point de vue
universel en étudiant les représentations polynomials de GLn, ce qui
permet d'établir en particulier un « splitting principle », de manière très
directe à partir de [9]. L'apport de géométrique algébrique est alors la
« connaissance » des représentations du groupe algébrique GLn (K) sur
un corps K algébriquement clos.

On peut enfin remarquer que lorsque A est un corps et G un groupe
fini, M. Kervaire [7] a obtenu des propriétés supplémentaires concernant
les opérations \j/k par des techniques élémentaires, notamment l'extension
de corps et la restriction aux sous-groupes.

1. L'Anneau Ra (G)

Soient A un anneau commutatif avec unité et G un groupe quelconque
(non nécessairement fini). On désigne par AG Yalgèbre du groupe G, c'est-
à-dire le .T-module libre de base G, muni de la multiplication induite par
celle de G. Une représentation de G sur A est une classe d'isomorphisme de
TG-modules (à gauche), ^-libres de type fini. Le choix d'une zl-base de V
permet d'associer à la classe d'isomorphisme { V} un homomorphisme
p : G -» GLn {A) unique à conjugaison près. On dit que p est la forme
matricielle de la représentation. Il est utile de généraliser un peu le concept
de représentation et de considérer la sous-catégorie pleine gPA de la
catégorie abélienne des zfG-modules formée des modules qui sont projectifs
de type fini en tant que A-modules. On notera RA (G) le groupe de Grothen-
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dieck de ^ défini comme le quotient du groupe abélien libre L sur les
classes d'isomorphisme { V } d'objets de &A par les relations { V } { V }
+ { V" } associées aux suites exactes 0 ->• V -» V -> V" — 0. On remarque
que le produit tensoriel sur A : (V, V) -> F 0 A V\ muni de l'action
diagonale du groupe G préserve les suites exactes de ^-modules projectifs
et induit par conséquent une structure d'anneau commutatif avec unité

sur Ra (G).
Si p : G -» G' est un homomorphisme de groupes, p s'étend en un homo-

morphisme d'algèbre p : AG -» AG\ et tout AG'-module V devient un
v4G-module par X • v p (X) • v. On en déduit un homomorphisme
d'anneaux :

p*: Ra(G')Ra(G)
dit de restriction. De même, si / : A -> Ä est un homomorphisme
d'anneaux, tout y4G-module V fournit un ^'G-module A' (x) AV. On obtient
ainsi un homomorphisme d'anneaux:

/* : Ra (G) -» Ra, (G)

dit d'extension des scalaires. En d'autres termes, (G) est un foncteur
contravariant en G et covariant en A.

On définit encore IRA (G) l'idéal d'augmentation de RA (G), comme le

noyau de l'homomorphisme de restriction RA (G) - RA (1) K0 (A)
(scindé par l'homomorphisme de restriction s : RA (1) -> RÂ (G)). IRA (G)
est muni d'une structure de K0 (A)-algèbre via e.

Remarques. (1) Si RA (G) désigne le groupe de Grothendieck de la

catégorie £gGA des ^4G-modules -libres de type fini, l'inclusion de

catégories ££a cz_> gPA induit un monomorphisme sur les groupes de

Grothendieck

z: Ra (G) -> Ra (G)

(Comme les modules projectifs sont facteurs directs des modules libres,
l'assertion suit du critère [6, lemma 1]:

[M] « [N] dans RA (G) (resp. RÄ(G)) o il existe G, F, We &A
(resp. J?A) et deux suites exactes

0->G->M©JE->F->0 et 0->G->G©JE-+F-*0).
On vérifie ensuite aisément que i induit un isomorphisme sur les idéaux

d'augmentation
z: IRa(G)^IRa(G).
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Ainsi, la généralisation des modules libres aux modules projectifs se

traduit par une structure supplémentaire: l'action de K0 (A) sur l'idéal

d'augmentation.

(2) Si V est une représentation de G sur A de forme matricielle p : G

GLn (A), on peut considérer p* : RA (GLn (.A)) -» RA (G) et alors

m
où [Anid\ est la classe de la représentation id : GLn (A) GLn (A). De ce

point de vue, les groupes GLn (A) jouent un rôle universel pour les

représentations. Nous allons donc étudier maintenant un type particulier de

représentations de GLn (A).

2. Représentations polynomiales de GLn

Soit A un anneau commutatif avec unité. On considère le foncteur

GLn : stlgA -+ <$r ; A' h> GLn (A')

de la catégorie des ^4-algèbres commutatives avec unité dans celle des

groupes. Une représentation polynomiale de GLn sur l'anneau A est une
transformation naturelle de foncteurs

P '• GLn GLm

déterminée par une famille de polynômes pu (Xll9 Xnn, det(U)"1)
(1 < ij < m) à coefficients dans A comme suit:

pA,: GLn(A') GLm(A')

est définie par les fonctions polynomiales ptj sur A'.

Exemple. La puissance extérieure À2 : GL2 GL1 est une représentation

polynomiale sur Z définie par la fonction polynomiale

P (Xil? ^12? ^21? ^22) ^11^22 — ^12^21 •

Comme GLn (A) est un groupe algébrique affine, son algèbre affine

A (GL„) A[Xll9..., Xnn, det (Xy1]
(algèbre des fonctions polynomiales sur GLn) est une algèbre de Hopf
(la multiplication GLn x GLn GLn induit la comultiplication

A (GLn) -> A (GLn x GLn) A (GLn) ® A (GLn)).
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Soit E un ^-module. Une structure de A (GLJ-comodule sur E est la
donnée d'un homomorphisme ^4-linéaire

dE : E -> A (GLn) ® AE

vérifiant les axiomes duaux d'une structure de module. Un homomorphisme
de A (GLfi-comodules / : E -» E' est une application ^-linéaire compatible

avec dE et dE>. L'ensemble

HomA{GLn\E,E')

des homomorphismes de A (GL„)-comodules est donc un sous-ensemble
de Hom^ (.E, E') des applications ^(-linéaires. On montre alors que la
catégorie des A {GLfi-comodules est abélienne [9] (pour l'existence de

noyaux, on utilise le fait que A (GLn) est un ^-module plat, ce qui assure

que si E CE\ alors A (GLn) ® E C A {GLfi 0 E').

Lemme 2.1. La donnée d'une classe de conjugaison par des matrices de

GLm (A) d'une représentation polynomiale p : GLn -> GLm est équivalente
à celle d'une classe d'isomorphisme de A {GLfi-comodules A-libres de

rang m.

Preuve. La correspondance est donnée par la formule

dE (e,) TAPjidet(X) ~*) 0 e,

où { eu em } est une ^4-base de Am.

Soit PPA (GLn) la sous-catégorie pleine de la catégorie des A (GLJ-
comodules formée des comodules qui sont projectifs de type fini en tant que
A-modules (généralisation des représentations polynomials de GLn).

On note alors RA (GLn) le groupe de Grothendieck de A (GLfi (quotient
du groupe abélien libre sur les classes d'isomorphisme d'objets {E} de

&A (GLn) par les relations {£} {Ef } + {E" } associées aux suites

exactes 0 E' -> E -> E" 0. Le produit tensoriel sur A : (E, E') E

® aE' muni de la structure de comodule

dE ®dE' m® id
E ® E' > A (GLn) ® A (GLn) ® E ® E' > A (GLn) ® E ® E'

(où m est la multiplication de l'algèbre de Hopf A (GLn) induite par la

diagonale A : GLn GLn x GLn) préserve les suites exactes de ^[-modules

projectifs et induit une structure d'anneau commutatif avec unité sur

Ra {GLfi (l'unité est la classe du A (GL„)-comodule A défini par dA{1)

10 1).
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2.2. La donnée d'un A (GLJ-comodule E fournit pour toute 4-algèbre A'
un A' [GLn (A')]-module par:

id ® dE éi) 0 id

A' [_GLn (A')\ ® aE > A'[GLn(A')] ® aA (GLJ ® E A' ® AE

où év : A' [GLn (4')] ® ÄA (GLn) -» 4' est l'homomorphisme d'évaluation.

Par suite, on a des homomorphismes d'anneaux canoniques

eA,:Ra (GL„) - RÄ, (GL„ 04')) ; £ ^ X' (g)

Remarque. D'une manière générale, si H est une algèbre de Hopf qui
est de plus un 4-module plat, on notera RA (H) le groupe de Grothendieck
de la catégorie &A {H) des 77-comodules qui sont projectifs de type fini
en tant que 4-modules. Comme pour RA (GLn), on montre que RA {H)
est un anneau commutatif avec unité. Nous utiliserons les algèbres de Hopf

A(Mn) A [Xlu...,Xnnl A (Tn)

A [Xlt X„],A=A Xm; 7raJ

dont les groupes de Grothendieck RA {H) s'interprètent comme
représentations polynomiales de Mn (n*n matrices), Tn (matrices diagonales)
et Mn x Mm respectivement.

3. Le pré-panneau Ra (77)

Définition 3.1 [1], [2]. Un pré-X-anneau (X-ring) R est un anneau
commutatif avec unité, muni d'une suite d'opérations vérifiant les
propriétés suivantes :

(i) 2° (x) 1 et X1 (x) x
(ii) Ak (x + y)XLo V (x) //"' O)

En introduisant les séries formelles At (x) Er=oL (x) et

00 ~*Jt(l0S (X)) ~ (X))(A'(x))"1 '

on définit une suite d'opérations i//k: R->0 (opérations
par

L'Enseignement mathém., t. XXVI, fasc. 1-2. in
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On vérifie immédiatement que les opérations \j/k sont des endomorphismes
de groupe et que i/j1 (x) x. D'autre part, on tire de la définition la
formule [1]:

(*) ^ • x1 + + (-1/"V1 -A*"1 + (-lfkXk 0

qui peut servir de définition par récurrence des opérations d'Adams. Si x
est de rang 1, c'est-à-dire Ât(x) 1 + xt, on vérifie par induction sur k
à l'aide de la formule (*) que \f/k (x) xk.

Si H est une ^-algèbre de Hopf qui est de plus un ^-module plat, nous
allons définir des opérations Xk sur RA (H). Soient E e &A (H) et k > 1

entier. On considère la fc-ième puissance tensorielle Ek E ® A ® AE

(ik facteurs) munie de la structure de iZ-comodule

dE ® • •• 0 dE m <8> id

E ® ® E > H ® ® H ® E ® ® E H

® E ® ® E

où m est la multiplication de k facteurs dans l'algèbre de Hopf E[ (si H
A (GL„), m est induite par la diagonale A : GLn GLn x x GLn).

Le sous-module de Ek engendré par les xx ® ® xk où xt Xj pour un
i # j, est muni d'une structure de H-sous-comodule de Ek : si dE (x)

Ec®*,, m [(dE®dE)(x®x)] m [<£c,®x,) ® Œ/i® YA
® xt ® Xi + J]r<scrcs ® (xr®xs + xs®xr). Par passage au quotient, on
obtient un LT-comodule XkE (k-ième puissance extérieure).

On convient que X°E A (üf-comodule trivial défini par dA (1) 1®1).
On vérifie que )kE e 0*a {H) au moyen de la formule classique sur les

^-modules
)k{E@F) ~ ®k=0 ÈE ® lk~iF

car il est clair que les puissances extérieures de modules libres sont des

modules libres.
Si 1 + Ra (H) [[t]] + désigne le groupe multiplicatif des séries formelles

sur Ra (H) de terme constant 1, il s'avère que la formule

M-E} I/=o[A'£]ti

sur les générateurs de RA (H) induit un homomorphisme de groupes

K : + Ra (H) [[t]] +

et par suite une structure de pré-2-anneau sur RA (H). Le point essentiel

de la démonstration est le



Lemme 3.2. Si 0-+V-+W->V'->0 est exacte dans PPA (.H), alors

[A*tF] [A*F] • dans RA(H)

c 'est-à-dire Xt : RA (H) - 1 + RA (H) [[>]] + est bien définie.

Preuve. Soit / : Wm-+XmW la projection canonique. En tensorisant

la suite 0 F -> W V' 0 suffisamment de fois par V et W, on obtient

une filtration

0 CVmCVm~1 0 W C... C V1 0 Wm~l C... C Wm

L'image par / de cette filtration / (Vl0Wm~l) est une filtration
du if-comodule XmW (W{ coïncide avec le sous-module engendré par
les ^ a a xm ayant au moins i facteurs dans V). On va montrer d'une

part que
Wi/Wi+1 ~ XlV 0 Xm~lV (en tant que #-comodules)

et d'autre part que les Wt sont des objets de PPA {H). Alors, par définition
du produit dans RA (.H), on a

Le lemme suit alors directement de ces considérations. Pour montrer
l'isomorphisme WJWi+1 ~ XlV 0 Xm~iV, on considère le diagramme

[AiF]-[Am-<7'] \_XlV 0Xm~iV'~\

et d'autre part, on aura (en posant Wm+1= 0)

[XmW] Y,i=o lWilWi+1]

V1 0 Wm~i f
Pi

f
où pi est induit
par la projection
p : W V'.

V1 0 V' m —

WilWi+1

A'V ® Am~l; y
Il est clair que / induit les homomorphismes de //-comodules /' et/".
Pour vérifier que/" est un isomorphisme, il suffit de vérifier que/" est
un isomorphisme de /(-modules. Mais, en tant que /(-modules, W ~ V
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©F', donc ÀmW ~ ©jL^'F ® Am~lV, et via cet isomorphisme, WJWi+1
s'identifie à AlV ® Am~iV/.

Enfin, les suites exactes

0-> Wi+1 W i WJ Wi+1 0

montrent par induction que les sont ^4-projectifs de type fini pour
i 0, 1, m+l.

On déduit immédiatement du lemme 3.2 que les opérations Ak définissent

une structure de pré-2-anneau sur RA {H) (donc en particulier sur RA (GL„),
Ra (M„), Ra (Tn), Ra (Mn X Mn) etc.).

Remarques. (1) En suivant exactement la même démarche, on munit
les anneaux RA (G) d'une structure de pré-2-anneau (Ak est la k-ième
puissance extérieure munie de l'action diagonale de G), naturelle vis-à-vis des

homomorphismes de restriction et d'extension des scalaires, et compatibles
avec les homomorphismes canoniques définis sous 2.2

eA.: RÄ(GLn) ^ RÄ,(GLn

(2) Le dual V* HomA (F, A), muni de l'action de G définie par

te •/)(*) fiir1-*)
induit une involution de pré-2-anneau sur RA (G). On en déduit des opérations

d'Adams d'indice négatif

\lf~k(x) \l/k(x*) (^fe(x))* k > 0

Ces opérations vérifient aussi la condition \j/~k [P] [P]~k, k >0 sur les

éléments de rang 1 (pour autant que la notation [P]-1 ait un sens, c'est-

à-dire [P] inversible), ce qui justifie leur appellation.
On dit qu'un PT-comodule E ^ 0 est simple s'il ne possède pas de sous-

comodule propre; E est dit semi-simple s'il est somme directe de sous-

comodules simples.

Lemme 3.3. Si F est un corps, le groupe de Grothendieck RF (H)
s'identifie au groupe abélien libre sur l'ensemble des classes d'isomorphisme
de H-comodules simples.

Preuve. Comme les espaces vectoriels de dimension finie sont de

longueur finie, tout objet de PPF (H) est a fortiori de longueur finie.
Maintenant, comme la catégorie PPF {H) est abélienne, le théorème de Jordan-

Hölder [5] s'applique et le lemme en résulte.
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Corollaire 3.4. Si k est un corps de caractéristique nulle, ou bien un

corps fini, et K\k une extension de corps, alors l'extension des scalaires

i : Rk (GLn) -> Rk (GLn) est injective.

Preuve. Soient E, E' deux k (GLJ-comodules simples non isomorphes.

Au moyen de l'isomorphisme classique:

X ®k Homk (.E, E') ~ HomK (K ®kE, K ®hE')

On montre que

K ® UomHGLn) (.E, E') ^ Homx(GLri) (X ®k E, K ®kE')

donc le second membre est nul. D'autre part le comodule K ® kE est

semi-simple, car son anneau d'endomorphismes est K ® kDE, où DE est

le corps EndK(GLn) (.E), donc semi-simple ([4], l'un des deux corps est

séparable sur k en vertu des hypothèses). Alors, la formule Hom*(GLn)

(K®kE,K®kE') 0 montre que K ® kE et K ® kE' sont sans facteur

simple commun. I I

Lemme 3.5. Si K est un corps infini, Ehomomorphisme canonique défini
sous 2.2 : eK : RK(GLn) -> RK (GLn (.K)) (envoyant le K (GLfi-comodule E
sur le K [GLn (X)] -module associé E) est injectif.

Preuve. En vertu du lemme 3.3, il s'agit de montrer que deux comodules

simples non isomorphes ont pour image deux modules simples non
isomorphes. Comme GLn (K) est un ouvert dense de Mn (.K) (/zx/7-matrices)

pour la topologie de Zariski, le lemme suit du résultat classique : « Si la
fonction polynomiale associée à un polynôme P(X1,...,Xn) est

identiquement nulle sur un anneau intègre infini, alors le polynôme P est

nul. » f j

Remarques. (1) Pour un corps algébriquement clos, on peut parler du

groupe algébrique GLn (K) et de l'anneau RE9 (GLn ÇK)) des représentations

algébriques de GLn (K). Ce dernier coïncide avec RK (GLn).

(2) En exploitant ce point de vue, J.-P. Serre [9] montre en particulier
que les homomorphismes d'extension des scalaires:

i : Rz (GLn) -» Rq (GLn) et i' : Rz (GLn x GLm) -> Rq (GLnx GLm)
sont des isomorphismes (il établit en premier lieu une suite exacte

©p RFp (H) - Rz (H) L Rq (H) - 0
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[9, théorème 1] pour toute algèbre de Hopf H, puis il montre la surjectivité
des homomorphismes de décomposition

dp - Rq (GL„) -> (GLn) et dp : Rq (GLn x GLm) —> RFp (GLn x GLm)

Par construction jpodp 0; il s'ensuit que / et V sont des isomorphismes
[9, théorèmes 3 et 5]).

Lemme 3.6. Soit p un nombre premier. L'homomorphisme canonique

ep ' (GLn) rim^l ^Fprn (GL„ (F^w))

est injectif.

Preuve. Suit du résultat classique « Si la fonction polynomiale associée

à un polynôme P(XU de degré # est identiquement nulle sur un

corps contenant au moins q + 1 éléments, alors P est identiquement
nul ».

Si A est un anneau de caractéristique p > 0, on désignera par Frob
l'homomorphisme de Frobenius de A défini par x i-> xp.

Corollaire 3.7. Si A est un anneau de caractéristique p > 0, alors

r Frob* : RA(G)RA(G).

(Ra (G) désigne le groupe de Grothendieck de la catégorie des AG-
modules A-libres de type fini.)

Preuve. Comme tout objet V de P£GA est de la forme V p* (Anid), il
suffit par naturalité de montrer:

V [A?,] Frob* lA'uJ e RA (GL„ (4))

Comme [A"d] est dans l'image de l'homomorphisme canonique eA :

Ra (GLn) -> Ra (GLn (^4)) de pré-A-anneaux, il suffit de montrer

«Ap Frob* : RÄ(GLn)-> RA(GL„).

Par le lemme 3.6, on se réduit encore à montrer

i j/FFrob* : RFptn(GL„(F^J)-> (FpJ).

Cette dernière égalité s'obtient facilement à partir de [7]. j~i



4. Le théorème fondamental (Splitting principle)

Définition 4.1 [1], [2]. Un pré-X-anneau R est un X-anneau (special

X-ring) si les X-opérations vérifient les propriétés supplémentaires [1],

trivialement vérifiées sur les sommes d'éléments de rang 1 :

(i) Xt (1) 1 + t

(ii) A"(.yj) P„ (A1 (x),A"(x);{y),(y))
(iii) Am (A" (x)) Pmn (A1 (x),A (x))

où Pn et Pmn sont des polynômes à coefficients entiers (donc définis par
leur valeur sur les sommes d'éléments de rang 1 Le sous-ensemble de R

vérifiant les formules (ii) et (iii) est fermé pour l'addition [1], [2]. Une
forme faible (équivalente si R est sans torsion en tant que groupe abélien)
de ces conditions s'exprime aisément en termes d'opérations d'Adams
[IL [2]:

(1) \l/k : R -> R est un endomorphisme d'anneau (et même de X-

anneau)

(2) \j/k oxj/1 il/1 o\j/k if/kl.

Nous désirons montrer que RA (G) est un A-anneau. Si P e P est

l'image d'un projecteur dans un AG-module V, A-libre de type fini

p2 p : V -> V (Im p =P

(par exemple V P © Q où Q est un inverse projectif de P muni de la
G-action triviale). En choisissant une A-base de V, p e Mn (A) et, si a : G
-> GLn (A) est de la forme matricielle de V, on a

F

De même, si P' e on peut écrire

P' -im (p' : V'-yV),p'2 p'et V' a'* (Äß).

Rappelons que RÄ(M„x MJ est le groupe de Grothendieck de la
catégorie 9A (Mn x Mm) des A(M„xMm)-comodules /(-projectifs de type
fini où A (Mnx Mm)A [X1UXnn-Comme on l'a vu,
Ra(Mn x MJ est un pré-A-anneau. Le fait crucial pour la suite est le
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Lemme 4.2. (p, p') définissent un homomorphisme de pré-X-anneaux

a(p,pr): R%(MnxMm) -»• (G)

tel que [P], [/"] e a O, //) Pz (M„ x M,„).

Preuve. Si E est un Z (M„ x Mm)-comodule, on lui associe eA (E) A
® ZE muni de l'action canonique de Mn (A) x Mm (A) définie sous 2.2.

Ainsi le couple (p, p') de matrices agit comme un projecteur sur eA (E).
Le ^-module projectif image de ce projecteur (p,pf)-eA(E) est muni
d'une action du groupe G car

v(9)-P p-c(g) et

par hypothèse. On pose alors

a(p,p')(E)

Maintenant, si 0 E' E -> E" - 0 est exacte dans (Mn x Mm),
alors

0 -> (p, pf) • eA (E') (p, p') • (F) -> (p, p') • ^ (F") -> 0

est exacte dans ^ (en tant que ^-module, eA (.E) eA ÇE') © eA {E")
et l'action de (p,p') sur eA(E') © eA ÇE") est de la forme ((P'0P <p*p')))-

Enfin, par fonctorialité des puissances extérieures,

(P, P') ^(eA(£)) Xk p') eA

Pour terminer, on remarque que [P] a(p,p') [ZFl] et [F'] a (p,pr)
[Zp2] où Zpx (resp. Z2) est le Z (M„ x Mm)-comodule défini par

dzrc : Z" - Z[ZU, Yn,7mm]® Z" ; ® eJ
1

(resp. rfzm: Zm -> Z [I11;X„„; Y11;YmJ ® Zm ;

P2

ei^IA Yji®ej).

Si Fest un corps, on peut, en vertu du lemme 3.3, identifier RF (Mn x Mm)

au sous-anneau de RF (GLn x GFm) engendré par les représentations ne

faisant intervenir ni det(Z)"1, ni det(7)-1. Par [9, lemme 5], les

représentations polynomiales simples de GLn x GLm sur un corps sont classifiées

par les poids dominants. Comme la condition de se prolonger à Mn x Mm

(c'est-à-dire de ne faire intervenir ni det(JL)-1, ni det(7)_1) se lit sur
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les poids, la démonstration de J.-P. Serre [9, théorème 5] passe au cas du

monoïde Mn x Mm et livre que l'homomorphisme d'extension des scalaires:

i : Rz (M, x MJ^Rq (M„ x

est un isomorphisme.

Proposition 4.3. Le pré-X-anneau Rz (Mn x Mm) est un X-anneau.

Preuve. Pour établir les formules (ii) et (iii) de la définition 4.1, on

utilise un résultat de J.-P. Serre [9, théorème 4] :

si Ra (Tn) désigne l'anneau des représentations polynomiales du tore Tn

(matrices diagonales) d'algèbre de Hopf A (Tn) A [Xu Xn],

l'homomorphisme de restriction:

RQ(GLnxGLJ > > Rq (T„+J

est injectif. Donc la composition

Rz (Mb x MJ Rq (Mb X MJ > ^ £q (GLbX GLJ > > Rq (Tb+J

est injective. Or les représentations polynomiales du tore Tn+m sont sommes
de représentation de rang 1. n

Théorème 4.4. Le pré-X-anneau RA (G) est un X-anneau.

Preuve. Il suffit d'établir les formules (ii) et (iii) de la définition 4.1

pour des classes [P] et [Q] d'objets de & GA (générateurs additifs de RA (G)).
Par le lemme 4.2, on se réduit à vérifier ces formules dans Rz (Mn x MJ,
ce qu'on a fait à la proposition 4.3. q

Proposition 4.5. Si A est un anneau de caractéristique p > 0, alors

r Frob* : RA(G)-*RA(G)

Preuve. Comme au théorème 4.4, il suffit de montrer que

Frob, : RVp (M„) -»• RFp (M„).

Or, RVp (M„) >—>• RFp GLn)est injective, et l'égalité a déjà été établie

sur RFp (GLn) au corollaire 3.7. [—j
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