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SOME REMARKS ON INVARIANT WHITNEY FIELDS

by Leif JACOBSEN

In this note we generalize a result of Bierstone and Milman [l1] on
liftings of ¥ Whitney fields to the case involving the orthogonal action
of a compact Lie group G.

The method involves only completely standard notions and consists of
modifications of the proof in [1]. We shall only indicate the necessary
amendments and will refer to the ideas and notations of the paper [1],
which should therefore be consulted all the way by the reader.

Our theorem is divined by noting that, given the action of G on R”"
and an invariant closed subset X of R", one obtains a natural action on the
space & (X) of ¥ Whitney fields on X which leads to a very easy G-
invariant version of the classical Whitney extension theorem. This action
then, is the one needed in the statement of the results below (The action was
implicitly used in [4] for the case G = S (n), the permutation group).
A result of Schwarz-Mather type for Whitney fields (proposition 3) is
presented. We close with comments on the “remarks” of [1], as well as
one or two remarks of our own.

Notation. The notation employed here is that of [1], which is almost
identical to the one found in [6] or [9]. Thus X = R" is a closed set, J (X)
is the space of jets F = (F¥),yn 00 X, and & (X) is the subspace of Whitney
fields on X. For reasons which will become apparent below, we identify
J (X) with the space ¢° (X) [[z]] of formal power series with coefficients
in the ring €° (X) of continuous functions on X, and “formal” variable
zeR" An FeJ(X) may also be regarded as a map X - R [[z]]. The

k
identification is given by associating (F Veenn  tO Y Fk(’x)
keNn :
x € X. Note that one still has an “identity” theorem and that #° (X) [[=]]
is graded in z.
In addition to the concepts introduced in [1], we consider a compact

Lie group G, acting orthogonally on R” (see e.g. [2] for information on
group actions). e denotes the neutral element of G.

(z=x),
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More generally, we can let G act linearly on a locally convex topological
vector space E, that is via a representation G — GL (E), and the action is
assumed to be continuous (which implies smooth for E = R"). Often
g € G is identified with its image in GL (E), so that g is a linear operator
E— E.

We use the same dots for all actions, so that for instance G X R” - R”
is written (g, x) - g . x.

If V' is another locally convex vector space with a linear G-action,
one gets an action on the space ¥° (E, V) of continuous maps E — V by

(1) g.F =goF og™"' (geG, FE4°(E,V)).

The fixed-point set of this action is the set of G-equivariant maps, that is
maps with F(g.x) = g.F(x), ge G, xe E. Of course (1) also yields an
action on €° (X, V) for any G-invariant subset X of E (G- invariant means
G . X = X). In particular, if the action on V is trivial (which is always the
case for V' = R), this means that F(g.x) = F(x), g € G, x € E. One then
uses the word G-invariant.

Given any F in €° (E, V), where V is a Fréchet space, one has a cor-
responding equivariant map Av, F, given by

(2) (Avg F)(x) = [¢9™ ' . F(g9.x)du(g), xe€E.

Here u denotes Haar measure on G, and the vectorvalued integral is defined
as in e.g. [8].

Examples: Assume that X is a closed, G-invariant subset of R". Then
there is an action on €° (X) given by

(3) g.f =fog !t (fe°X), geG).

Note that for X = R”, (3) induces an action on & (R"). Also Av; fis smooth
(continuous) whenever f is (it is here given by (dvg f) (x) = IG f(g.x)

du(9).)
Furthermore, there is an action of G on J (X) = 4° (X) [[z]] by

(4) (9g.F)(z) =(@.F)(g'.2) (9¢G, FeJ (X))

where F = (F¥)xn and g. F = (g . F¥)nn- The usual composition of
power series (see [4]) is used (g (0) = 0). Let & (R and %° (X) [[2]]°
denote the fixed-point subspaces of G-invariant functions and jets and put

E(X)° = 4°(X) [[z]]° n & (X). When z is left out, the fact that F is
an invariant jet means that certain linear relations between the F* og
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hold, for each fixed |k l The coefficients are powers of the entries g;;
of g € GL (n, R). In particular, F° is G-invariant.

We have the map Ty = J : & (R") = J (X) = €° (X) [[z]]. For con-
venience, we put J, (f) = J(f) (x), fe & (R"), x € X. Viewing F in J (X)
as a map X — R [[z]] and using (2), (3), (4) and the fact that J, (f © q)
= Jy0 (f) 0g, (here g, (z2) =g.x tg. (z—x)), one computes that
J 0 AV, = AV o J. Note that in the space V = €° (X) [[z]], the defi-
nition of u means that [Y,F*(g, x) Z"du(g) = Y [[F* (g, x) du (9)] 2*
(F* € 4° (Gx X).). Also note that J, (f) is graded by the Ji (f)

Dk
= S D =9, meN. Let TE() = (D] Dpyne The
- e |
reason for introducing the actions (3) and (4) becomes clear in the following

two propositions. G is acting orthogonally on R".

ProrosiTION 1. Let X < R" be G-invariant. Then
Ty: &R > &(X)

is G-equivariant. Consequently & (R")¢ is mapped into & (X)°.

Proof. The action (4) grades ¢° (X) [[z]] as well as the subring & (X),
so we may prove the proposition by induction. Assume that Jy (g.f)
=g.Jy(f) is true for ge G, xe X, f €& (R"). Any ke N* with | k|
= m + 1 is of the form k = k" + (i), ]k’l = m (see [1] p. 135 for (i)).
For all xe X, g € G, one has

n

@ I Dfop@E=x= ¥ (D) og®[g.Ex),
noticing that [g . (z—x)]; = g_ll1 . (z—x) (g is orthogonal).
Here D; = D® and g |; is the i’th column of g € G. Now J™*! (f)
m . D;D¥' f (x)
“LRWN= Y X ( T
i=1 [k | =m (k +(l)) !
combined with (a) completes the proof.

(z—x)* (z—x);, hence induction

ProposiTioN 2. Let X < R* be G-invariant. Ty : & (R"C — & (X)¢
is surjective. Ty : & (R")® —» &™ (X)€ is split-surjective for all m e N.

Here &™ (X) denotes the subspace of Whitney fields (F*), . with
F* =0 for | k| > m. See [5] p. 146 for the definition of split-surjective.
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Proof. By the Whitney extension theorem there is a function f e & (R"
with J(]N’) = F for a given Fe & (X)°.
Put f= Avef = [of (9.%)du(g). Then fe& R and J(f)

= AvgJ ( ; ) = AvgF = F by the last remarks in the section on notation.

For m < oo we may choose f = @, (F), ®,, being continuous and linear,
and so Avg; o @, splits Ty .

This is a natural invariant version of the Whitney extension theorem.
Now we are prepared to generalize the theorem of [1].

THEOREM. Let X be a G-invariant closed subset of R”?, and £ a Hausdorff
topological vectorspace, topologized by a family of seminorms || . ||,c4.
Assume that G acts linearly and continuously on E. Let H : E — & (X)
be an equivariant continuous linear map. Suppose that for each a e X,
there is a continuous linear map H, : E — & (R") such that

@) TxH, (<) = H( (@) forall {ekE

(b") For each me N and L <= R" compact, there exists A = A (m,L)e 4
and a constant ¢ = ¢ (m, L) such that for all (€ E

@) |H, (| m<ecOnL)|| & ][Am -
Then there exists an equivariant continuous linear map H:E-¢& (R

such that H (&) | X = H (&), £ € E (that is, TyH = H).

Here the assumption is that G acts on & (R") and & (X) by (3) and (4).
a’) expresses an identity in R [[z]] (this is also the meaning of a) in [1]).

Now let F: & (R*) » & (X) be a continuous linear map and denote by
supp F its support as defined in the natural way ([1] p. 132). Let G act
linearly and continuously on & (R¥). Assume that F is G-equivariant, and
note that then supp F' is invariant. By the proof of the corollary 1 in [1],
we have

CoroLLARY 1. If F has compact support, then there is an equivariant

continuous linear map f’ : & (R") - & (R"), such that the following diagram

commutes
7 E(RY

, l Ty
& (RY - & (X)




A T N AR S T TR T T W T T e T o
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In particular, if G acts trivially on & (R¥), we have a commutative diagram

A7 mG

¥~ (&)
|

& (R¥) - & (X)

by proposition 1.

Now consider the situation described in [5]: Let ¢ : R" —» R* be the
(proper) Hilbert polynomial map. This is the map given by a set (o4, ..., 6})
of (minimal) generators for the algebra of G-invariant polynomials R* — R
(see also [7], p. 6). The Schwarz-Mather theorem states that the map o* :
&R - & RN, H— H oo is split-surjective. Correspondingly, we
have for X = R” G-invariant the

ProOPOSITION 3. The mapping ¢* : & (a (X)) - &(X )¢ is split-surjective.

Proof. The composition H oo, He & (o (X)) is as in [4]. As in [5]
lemma 3, we let # (X)$ denote the space of homogeneous invariant
fields of degree d (this makes sense, namely for each x € X) and #” (¢ (X)),
the space of weighted homogeneous Whitney fields of degree d on o (X).
Now put 7,, = T (xy © # © @,, me N, where # is chosen to split

c*: SRH->EMRH® and &,

splits Ty according to proposition 2.

m
Ty

¢ (R B " (X)°¢
1] g
& (RY) To(X) ¢ (0 (X))

Evidently 7, splits o,. by the commutative diagram. Then one derives that
o3 W (0 (X); > # (X)§ is split-surjective, whence

o* =[]l gw(aa))ﬁ];[zmof

is split-surjective (the rings are graded via ¢). Note that the resulting map #
is continuous using the topology on & (X) given in [1].
It was tacitly used that H o ¢ is Whitney if H is (noted in [4]).

Proof of the Theorem. We trace the proof in [1], with the necessary
modifications.
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It suffices to prove the theorem for X = K compact, because we have
G-invariant continuous partitions of unity on X, using Av.
Take the Whitney partition of unity { @; I iel} on R"\K from [I]

and put 551- = Avg®;, i€l Then the family {q;l ] iel} of functions in
& (R"\K)® has the properties

i) { supp d;i [ iel} is a locally finite family and N (x) < N (n, G),
a number depending on G and n, but not on x.

~

i) @, >0foralliel Y& (x) = I for all xeR"\K.

iv’) There exists a constant ¢,, depending only on k, » and G, such that
for all xe R"\K

IDk 5i(x) I < CN'k (1 +d (x, K))*Ikl

Here ii") is clear by the properties of Haar measure.
For all g € G, induction and the chain rule shows that

D* (®;09)(x) = L’; (@) og(x),

where L’; is a linear partial differential operator of order | k[ with coef-
ficients depending polynomially on g. If C¥ is the supremum of all these

coefficients over G, and N, their number, then the definition @ (x)
= f c®; ©0g (x)du(g) and the inequality valid for @, shows that

| D% ,(x) | < N,CEC, (1 +4d (x, K))™H,

because we have d(g.x, K) > d(x,K) for all ge G (g 1s orthogonal).
This proves iv’).
i") is proved by induction on dim G. It is evident for dim G = 0 (G

being then discrete, hence finite), because supp @; < G. supp D,.

Suppose the claim is true for all p < dim G. Taking any x € R", the
slice theorem (see [2], p. 308) enables us to look at a G-invariant neigh-
borhood of x as being of the form GxgV, H = G, the isotropy group at
x, V = V, the normal space to the orbit G (x) with orthogonal H-action.

There is a trivial isomorphism & (GxxzV)% 5 & (MH (see e.g. [7],

p. 51), so that each restriction @; | GxyzV may be looked upon as an H-
invariant function on V. Assuming that G (x) is not discrete, hence dim H
< dim G, the induction can be carried out.
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[The inequality iii) has no counterpart; one may show 6 d (supp @;, K)

+ ¢ > diam (supp ci-), 5 = diam G (a,) for an a; € K realizing the distance
to supp @;].

Now we define f = H (¢) € & (R") in a manner similar to the one in [1],
by

f(x) = F°(x), xekK

f () ZI ®; (x) (Avg H, ) (O) (), x¢ K

The a, are chosen as in [1] (note that d (K, supp ;) = d (K, supp @))).

Avg H,, and 551. being respectively equivariant and invariant, H becomes
equivariant according to (3).

We now show that the continuous linear maps Avg H, are pointwise
lifts, that is, still fulfil a") and b’) (¢ now depending on G too)

For ae K, £ € E we have

Tx(AvgH) (&) (a) = Ty [g 97" . H, (9.8 dg(a)
= (697 . Tx(H,(g.9)(a)dg = [c9™' . H(g.%)(a)dyg
= [ H(®)(a)dg = H (&) (a),

using a’) and the fact that H and Tk are equivariant (prop. 1). dg = du(g)
here.

Now, to tackle b"), one first observes that, as is well known, one may

(without loss) assume the family H . H seq defining the locally convex
topology on E, to be upward filtering. (2") can still be assumed to hold,
and the continuity of an operator p : E - E means that to each || .||,

there is a constant ¢ and a u € A such that

lp @ |, <c|l&]], forall ¢eE.
Take A e A. Then for all £ € E one has an inequality

) |[g.¢]]: <

for some A" e A and a constant ¢’ = ¢’ (G, 1), but independent of g € G.

In fact, given || .||, and & = 1, there is a neighborhood U of e in G
and A"eA, 6 >0 such that ge U, || ||, <6 implies ||g. ¢, <1,
by the continuity of the action. Let G be covered by finitely many left-
translates g;U, je J. To each g;, viewed as an element of GL (E), there
is a constant ¢; and A;e€4 such that || g;. & ||, <c¢;]| ¢ H,1 for all éeE.

Put ¢ = sup ¢; and choose A€ A such that || . ||, > || . I ,]EJ
JjeJ
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Now, given g € G, € E, we put k = || ¢ ||,,. It may be assumed that
k > 0. Let & = ck/6, then ||A™'g;¢ ||, <6 for all ]eJ Furthermore,
gg; e U for some jeJ. Hence lg-&ll.=hl||l(gg7 ) (" g;0) |, <h
~e ¢l

Next, using (x), (2'), the estimates of (iv") and the Haar integral, one gets

| Avg sup | D*fe9™" . H,(g.%)(x)dyg |
]klém
= sup | [ D*(H,(g .8 0g)(x)dyg |
|| =m
< Jq sup I[Ly(H,(g.9)] og(x)|dg
]k[ém
< [¢N,CE|H,(g.8]|%"dg
< [N, CGC(m,G.L)||g.¢&||zmor dg
< C(mL,G) || ¢ Hz'(m,L,G)

for some C' = C'(m,L, G) (N,, = sup N, etc.).
k| =m
This proves b’) for Avg H,. .

Now the rest of the proof can be carried out as in [l], replacing G,
with Av; H,: the evaluations (4)-(7) are valid without change and so
only the clazm of [1] with Avg; H, substituted for G, must be proved.
This too goes through as in [1], using a’), b"), (4)-(7) from [1] and i'), ii"), iv").

At two points (estimation of | S, (x) | and | S, (x)|) the inequality iii)
is needed, and as this is a purely local matter, necessary only to obtain the
inequalities | x—a; |la—a;| <4|x—a| (xeR"\K, aeK)
the estimate iii), valid for the original &;, can be used again, because we
could choose a; in supp @,.

Remark. If E is a Fréchet space it is only necessary to assume that the
action G X E — FE is separately continuous. Indeed, the boundedness of
orbits G . £ implies via the Banach-Steinhaus theorem that { £ g . ¢}
is an equicontinuous set of operators, hence for a 6 > 0 chosen as above
(no U needed) one gets ||g.¢ ||, <67 || €|, (9eG, E€E) instead
of (x).

In the remark 5 of [1] the possibility of obtaining the pointwise lifts H,
via finite map-germs ¢ : R" — RP? is discussed. We point out that there are
G-equivariant extensions of these theories as developed in [7]; in particular
the equivariant version of the preparation theorem is true [7], p. 64-72.
Thus if the X, X’ and ¢ mentioned in that remark are invariant under the
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orthogonal action of G, the W’ and W may already be chosen equiva-
riant.

Similarly, it appears that there is a G-invariant version of the Stein
extension theorem mentioned in remark 4 of [1]. This results from an
invariant version of corollary 2 of [1], combined with the invariant Seeley
extension theorem [7], p. 108. The X in the remark 4 is invariant if ¢ is
(Gactson R"** by g.(x,y) = (g . x,y) for g € G).

An alternative approach would be via proposition 2 and the techniques
of [4], which are somewhat similar.

We also wish to point out that there is a G-invariant version of the
Whitney spectral theorem (see [6], ch. V or [9], ch. V):

Let Q = R” be open and invariant under an orthogonal action of G,
G compact Lie. Let I = & ()¢ (using the action (3)) be an ideal. Then
f €& (Q)° belongs to I if and only if for each ae Q there isag, = gel
such that J,(g) = J,(f).

This goes via a fundamental lemma [6], p. 91, for the case 2 = a cube L.
With the notations of that lemma, if L is replaced by G.L,K by G.K

and T} by Avg T}, then Fel may be assumed invariant on G.L,

whence |§DF ol |EL <e¢ (@ = Av; &) can be achieved. Then one
proceeds. In the more general situation considered in [9], one needs [7],
lemma 1.4.1 (p. 106).

The action (4) is adapted to the operators D¥. One might consider
the simpler action on J (X) (X < R* G-invariant), given by g . F
= (F* 0 g™ Yyenns for F = (F*),xn» g € G. The corresponding problem of
finding f with J(f) = F, given Fe & (X)®, is now wholly different as
simple examples show (e.g. G = Z, acting by reflexion in 0eR). If f
exists at all, it must have strong singularities on K. As may be gleaned
from [3], there are topological restrictions on K, depending on G. It would

perhaps be feasible to obtain some answers if new operators are used
instead of the D,
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