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SOME REMARKS ON INVARIANT WHITNEY FIELDS

by Leif Jacobsen

In this note we generalize a result of Bierstone and Milman [1] on

liftings of ^°° Whitney fields to the case involving the orthogonal action

of a compact Lie group G.

The method involves only completely standard notions and consists of
modifications of the proof in [1]. We shall only indicate the necessary

\ amendments and will refer to the ideas and notations of the paper [1],

which should therefore be consulted all the way by the reader.

Our theorem is divined by noting that, given the action of G on Rn

and an invariant closed subset X of R", one obtains a natural action on the

space S (X) of ^°° Whitney fields on X which leads to a very easy G-

invariant version of the classical Whitney extension theorem. This action
then, is the one needed in the statement of the results below (The action was
implicitly used in [4] for the case G S (n), the permutation group).
A result of Schwarz-Mather type for Whitney fields (proposition 3) is

presented. We close with comments on the "remarks" of [1], as well as

one or two remarks of our own.

Notation. The notation employed here is that of [1], which is almost
identical to the one found in [6] or [9]. Thus X c= R" is a closed set, J (X)
is the space of jets F (.Fk)ksNn on X, and S (X) is the subspace of Whitney
fields on X. For reasons which will become apparent below, we identify
J (X) with the space (F° (X) [[z]] of formal power series with coefficients
in the ring #° (X) of continuous functions on X, and "formal" variable
zeR". An F e J (X) may also be regarded as a map X R [[z]]. The

Fk Oc)
identification is given by associating (Fk)ksNn to £ —— (z-x)k9

keNn k •

x e X. Note that one still has an "identity" theorem and that (X) [[z]]
is graded in z.

In addition to the concepts introduced in [1], we consider a compact
Lie group G, acting orthogonally on Rn (see e.g. [2] for information on

1 group actions), e denotes the neutral element of G.
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More generally, we can let G act linearly on a locally convex topological

vector space E, that is via a representation G -» GL (.E), and the action is

assumed to be continuous (which implies smooth for E R"). Often

g e G is identified with its image in GL (E), so that g is a linear operator
E-+E.

We use the same dots for all actions, so that for instance G x Rn -» R"
is written (g, x) -> g x.

If V is another locally convex vector space with a linear G-action,
one gets an action on the space (E, V) of continuous maps E V by

(1) g.F=goFog-1 (geG, Fe^° (E, V))

The fixed-point set of this action is the set of G-equivariant maps, that is

maps with F (g x) g F (x), geG, xgE. Of course (1) also yields an
action on (X, V) for any G-invariant subset X of E (G- invariant means
G X X). In particular, if the action on V is trivial (which is always the

case for V R), this means that F (g x) F (x), geG, x e E. One then

uses the word G-invariant.
Given any F in &° (X, V), where V is a Fréchet space, one has a

corresponding equivariant map AvG F, given by

(2) (AvgF)(x)s=jofiT1 ,F(g.x)dß(g),xeE.
Here g denotes Haar measure on G, and the vectorvalued integral is defined

as in e.g. [8].

Examples: Assume that X is a closed, G-invariant subset of R". Then

there is an action on (X) given by

(3) g.f=fog-1 (/e^°(X), geG).

Note that for X R'1, (3) induces an action on S (Rw). Also AvGf is smooth

(continuous) whenever / is (it is here given by (.AvGf (x) JG / (g x)

dg (g).)
Furthermore, there is an action of G on /(X) (X) [[z]] by

(4) (g F) (z) (g .F)(g~1 z) (geG, FeJ (X))

where F (FfcX6N^ and g F (g Fk)keNn. The usual composition of

power series (see [4]) is used (g (0) 0). Let S (R")G and (X) [[z]~]G

denote the fixed-point subspaces of G-invariant functions and jets and put
S (X)G (X) [[z]]G n ê (X). When z is left out, the fact that F is

an invariant jet means that certain linear relations between the Fk o g
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hold, for each fixed | k|.The coefficients are powers of the entries

of g e GL( n,R).In particular, F° is G-invariant.

We have the map Tx J: S (R") -+ / (X) [[z]]. For
convenience, we put Jx (/) J (/) (x), fe S (R"), rel Viewing Fin J
as a map X-* R [[z]] and using (2), (3), (4) and the fact that Jx (/ o g)

Jg(x) (/) 0 9x (here gx(z) g x+ g.(z-x)),one computes that

J o AVg AVg o J. Note that in the space A0 (X) [[z]], the

definition of g means that §Y,kFk (g, x) zkdg(g) [jFfc (g, x) dg (gj\ zk

(Fk e (Gx X).). Also note that Jx (/) is graded by the J'x (/)
Dk fIl meN.Let The

reason for introducing the actions (3) and (4) becomes clear in the following
two propositions. G is acting orthogonally on R".

Proposition 1. Let I c R" be G-invariant. Then

Tx : S (Rn) ->#(Z)

is G-equivariant. Consequently ê (Rn)G is mapped into ê (Z)G.

Proof. The action (4) grades (Z) [[z]] as well as the subring S (X),
so we may prove the proposition by induction. Assume that J (g ./)

Q - Jx (/) is true f°r 9 G G, x e X, f e S (R"). Any ^eN" with | k |

m + 1 is of the form k k' + (/), | k' | ~ m (see [1] p. 135 for (i)).
For all x e X, g e G, one has

(a) Î T>i(/° g)(x)(z~x)i=£
i— 1 i= 1

noticing that [g (z — xj\ t (z-x) (g is orthogonal).
Here Dt D{l) and g |{ is the fth column of g eG. Now J+1 (/)

~ Jx (f) X X 777—7777 (z~x)k' (z~~x)i> hence induction
i= 1 \k'\ =m \k +(0)-

combined with (a) completes the proof.

Proposition 2. Let Z c Rn be G-invariant. Tx : S (Rn)G -> S (Z)G
is surjective. Tx : ê (R")G -» Sm (X)G is split-surjective for all me N.

Here êm (Z) denotes the subspace of Whitney fields (.Fk)keNn with
Fk 0 for I k I > m. See [5] p. 146 for the definition of split-surjective.
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Proof. By the Whitney extension theorem there is a function / e S (R")

with /(/) F for a given F e ê (X)G.

Put / AvafJG/ (g X) d[i(fj). Then fe (R)G and

AvgJ (/) AvgF F by the last remarks in the section on notation.

For m < co we may choose / <Pm (F), being continuous and linear,
and so AvG o <Pm splits Tx

This is a natural invariant version of the Whitney extension theorem.
Now we are prepared to generalize the theorem of [1].

Theorem. Let Zbe a (/-invariant closed subset of R", and F a Hausdorff
topological vectorspace, topologized by a family of seminorms || \\^eA.

Assume that G acts linearly and continuously on E. Let H : E -+ S (X)
be an equivariant continuous linear map. Suppose that for each a e X,
there is a continuous linear map Ha : E -» S (R") such that

(a') TxHa(0 H(0(a) for all

(b') For each me N and L c R" compact, there exists X X (m, L) e A
and a constant c c (m, L) such that for all £ g E

(2') \Ha^)\Lm<c{m,L)\\^\\X^L).
Then there exists an equivariant continuous linear map H : E -> S (Rn)

such that H {<f) \ X H (£), ^ g F (that is, TXH Lf).
Here the assumption is that G acts on (Rn) and ^ (Z) by (3) and (4).

a') expresses an identity in R [[z]] (this is also the meaning of a) in [1]).
Now let F : ê (Rfc) ê (X) be a continuous linear map and denote by

supp F its support as defined in the natural way ([1] p. 132). Let G act

linearly and continuously on ê (Rfc). Assume that F is G-equivariant, and

note that then supp F is invariant. By the proof of the corollary 1 in [1],

we have

Corollary 1. If F has compact support, then there is an equivariant

continuous linear map F : ê (Rfe) -» ê (R"), such that the following diagram
commutes

~ S{R")

Tx
' (Rfc) £{X)
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In particular, if G acts trivially on g (Rk), we have a commutative diagram

- ^ g(W)G

g(Rk) j g(X)
by proposition 1.

Now consider the situation described in [5] : Let cr : Rn - Rk be the

(proper) Hilbert polynomial map. This is the map given by a set (<7ls ak)

of (minimal) generators for the algebra of G-invariant polynomials R" -> R

(see also [7], p. 6). The Schwarz-Mather theorem states that the map cr* :

ê (Rk) -> S (R")G> H -> H o o is split-surjective. Correspondingly, we

have for I c R" G-invariant the

Proposition 3. The mapping cr* : S (or (X)) -> S (X)G is split-surjective.

Proof. The composition H o a, H e ê (a (X)) is as in [4]. As in [5]

lemma 3, we let XP (X)G denote the space of homogeneous invariant
fields of degree d (this makes sense, namely for each xe X) and iV* (a (X))d
the space of weighted homogeneous Whitney fields of degree d on er (X).
Now put rjm T(X) o rj o <Pm9 me N, where rj is chosen to split

a* : g (Rfc) -*g(R")g and

splits T according to proposition 2.

0̂ n

(R")G

n
„

'(Rk) T„(X)

S"n(X)c

Evidently r\msplitsa*by the commutative diagram. Then one derives that
a* \iV(o(X)d -> Xf (X)d is split-surjective, whence

** n : n r o* -> n * w
is split-surjective (the rings are graded via a). Note that the resulting map rj
is continuous using the topology on S (X) given in [1],

It was tacitly used that Hocr is Whitney if H is (noted in [4]).

Proof of the Theorem. We trace the proof in [1], with the necessary
modifications.
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It suffices to prove the theorem for X K compact, because we have

(/-invariant continuous partitions of unity on X, using ÂvG.

Take the Whitney partition of unity {d>i\iel) on Rn\K from [1]

and put <£>i AvG$h iel. Then the family { <2>t-1 /e / } of functions in
ê (Rn\K)G has the properties

i') { supp <$i\ie 1} is a locally finite family and N (x) < N (n, (7),

a number depending on G and n, but not on x.

ii') > 0 for all i e I. (x) 1 for all x e Rn\K.

iv') There exists a constant ck, depending only on k, n and G, such that
for all x e Rn\K

\Dk$l(x)\<ck(l+d(x,K))-W

Here ii') is clear by the properties of Haar measure.
For all g e G, induction and the chain rule shows that

Dk(^og)(x)Lkg(4x)

where Lkg is a linear partial differential operator of order | k | with
coefficients depending polynomially on g. If CG is the supremum of all these

coefficients over G, and Nk their number, then the definition (x)
o g (x) dg (g) and the inequality valid for shows that

I Dk$i(x)\<NkCkaCk(l+d(x,K))-W

because we have d (g x, K) > d (x, K) for all g e G {g is orthogonal).
This proves iv').

i') is proved by induction on dim G. It is evident for dim G 0 (G

being then discrete, hence finite), because supp ^ cz G. supp
Suppose the claim is true for all p < dim G. Taking any x e R", the

slice theorem (see [2], p. 308) enables us to look at a (/-invariant
neighborhood of x as being of the form GxHV, H Gx the isotropy group at

x, V Vx the normal space to the orbit G (x) with orthogonal H-action.
There is a trivial isomorphism S (GxhV)g .x S (V)H (see e.g. [7],

p. 51), so that each restriction | GxHV may be looked upon as an H-
invariant function on V. Assuming that G (x) is not discrete, hence dim H
< dim (7, the induction can be carried out.
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[The inequality iii) has no counterpart; one may show 6 d(supp <Ph K)

+ S > diam (supp #f), ô diam G (at) for an at e K realizing the distance

to supp
Now we define / H (Ç)eS (RB) in a manner similar to the one in [1],

by

/ (x) F° (x), x e K

/(x) X &i(x)(AvGHa)(Ç)(x)9 x$K
iel

The at are chosen as in [1] (note that d (K, supp d(K, supp

AvGHa. and <Pt being respectively equivariant and invariant, H becomes

equivariant according to (3).

We now show that the continuous linear maps AvG Ha are pointwise

lifts, that is, still fulfil a') and b') (c now depending on G too)
For a e K, Ç eE we have

TK(AvGHa)(Ç)(a)TK ja g'1H.Ç)dgUd'1T k{Ha(g 0)(a)dg.H(g Ç)(a)dg
JG H(0(a) dgH(0(a),

using a') and the fact that H and TK are equivariant (prop. 1). dg dg (g)
here.

Now, to tackle b'), one first observes that, as is well known, one may
(without loss) assume the family || \\XeA defining the locally convex
topology on E, to be upward filtering. (2') can still be assumed to hold,
and the continuity of an operator p :E^E means that to each || ||A

there is a constant c and a g e A such that

lb© 111 < c || z for all ÇeE.

Take le A. Then for all £ eE one has an inequality

M Ik • ^ ||a <c' lb ||r
for some I' e A and a constant c' c' (G, I), but independent of g e G.

In fact, given || ||A and e 1, there is a neighborhood U of e in G
and l" e A, S > 0 such that g e U, || ^ || i" < ô implies 11 g Ç 11 x < 1,

by the continuity of the action. Let G be covered by finitely many left-
translates gjU, je J. To each gj9 viewed as an element of GL(E), there
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Now, given g g G, Ç e E, we put k || £ ||;/. It may be assumed that
k > 0. Let h ck/ô, then || |)r <(5 for all je J. Furthermore,
9971 6 ^ for some 7 e J- Hence || g Ç ||A h || (ggj*) (h~ ||^ <

(c<5_1) || £\\x--
Next, using (x), (2'), the estimates of (iv') and the Haar integral, one gets

\AvGHa(Z)\m= sup \Dk\ag~Ç){x)dg
x^L

\k\^m

sup I \aDk{Ha(g.Ç) og)(x)dg \

xeL
|fc I ^-m

< JG sup \[Lkt(Ha(g.Q)]og(x)\dg
xeL

\k\^m

< UXmC\Ha{g .0\GmLdg

< U^mCoC{myG .L)\\g ^\\k{m^L)dg
< C'(ro,L,G) |U [|;/(m,LsG)

for some C C (m, L, G) (Nm sup Nk etc.).
\k\^m

This proves b') for AvG Ha.

Now the rest of the proof can be carried out as in [1], replacing Ga

with Avg Ha : the evaluations (4)-(7) are valid without change and so

only the claim of [1] with AvG Ha substituted for Ga must be proved.
This too goes through as in [1], using a'), b'), (4)-(7) from [1] and i'), ii'), iv').

At two points (estimation of | S0 (x) | and | S1 (x) |) the inequality iii)
is needed, and as this is a purely local matter, necessary only to obtain the

inequalities | x — at | < 3 | x^a |, \a — a^|<4|x — a\ (xeRn\X, aeK)
the estimate iii), valid for the original can be used again, because we
could choose at in supp

Remark. If F is a Fréchet space it is only necessary to assume that the

action G x E -» E is separately continuous. Indeed, the boundedness of
orbits G £ implies via the Banach-Steinhaus theorem that {Ç g .£} geG

is an equicontinuous set of operators, hence for a ô > 0 chosen as above

(no U needed) one gets || g £ ||A < <5~1 || Ç ||A, (g e G, Ç eE) instead

of (x).
In the remark 5 of [1] the possibility of obtaining the pointwise lifts Ha

via finite map-germs cp : R" -> Rp is discussed. We point out that there are

G-equivariant extensions of these theories as developed in [7] ; in particular
the equivariant version of the preparation theorem is true [7], p. 64-72.

Thus if the X, X' and cp mentioned in that remark are invariant under the
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orthogonal action of G,theW and may already be chosen equiva-

riant.
Similarly, it appears that there is a (/-invariant version of the Stein

extension theorem mentioned in remark 4 of [1]. This results from an

invariant version of corollary 2 of [1], combined with the invariant Seeley

extension theorem [7], p. 108. The X in the remark 4 is invariant if cp is

(G acts on R"+1 by g (v, y) (g v, y) for g e G).

An alternative approach would be via proposition 2 and the techniques

of [4], which are somewhat similar.
We also wish to point out that there is a G-invariant version of the

Whitney spectral theorem (see [6], ch. V or [9], ch. V):
Let Q cz Rn be open and invariant under an orthogonal action of G,

G compact Lie. Let I cz S (Q)° (using the action (3)) be an ideal. Then

/ e ê {ßf belongs to I if and only if for each ae Q there is a ga g e I
such that Ja Gg) Ja (/).

This goes via a fundamental lemma [6], p. 91, for the case Q a cube L.
With the notations of that lemma, if L is replaced by G L, K by G K

A
and T by AvG Tthen Fe I may be assumed invariant on G L,

whence | <P F - f \G L < g, ($ AvG can be achieved. Then one
proceeds. In the more general situation considered in [9], one needs [7],
lemma 1.4.1 (p. 106).

The action (4) is adapted to the operators Dk. One might consider
the simpler action on J (X) (X cz Rn G-invariant), given by g F

(Fk o ^_1)fceNfl, for F (Fk)keNn, g e G. The corresponding problem of
finding / with /(/) F, given FeS{X)G, is now wholly different as

simple examples show (e.g. G Z2 acting by reflexion in 0 g R). If /
exists at all, it must have strong singularities on K. As may be gleaned
from [3], there are topological restrictions on K, depending on G. It would
perhaps be feasible to obtain some answers if new operators are used
instead of the Dk.
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