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[68, pp. 158-163]) by using the nonemptiness of the spectrum instead of
finite-dimensionality to obtain the first major step. The remainder of the
proof, though long, consists of entirely elementary algebraic verifications.
We shall not reproduce this proof here.

If 4 is an algebra over R, its complexification A is analogous to the
construction of C from R. (We may think of A. as 4+iAd.) Ac will have
a unit if and only if 4 does. Moreover if 4 is a normed algebra, the norm
may be extended to A, in a standard fashion (vid. Rickart [73, pp. 8-9])
so that the extension is complete whenever the original norm on A4 is.
The spectrum o (x) of an element x in A is defined to be its spectrum in
Ac. Thus if 4 has a unit e, « + if € (x) if and only if the element
(e« +ip) (e, 0) — (x, 0) is singular in 4. Again by analogy with the complex
numbers it is immediate that if @ and b are commuting elements of A, (a, b)
is invertible in A if and only if a® + b* is invertible in 4. Thus « + if
€ o (x) if and only if («—x)? + 2 is singular in A.

4. NORM CONDITIONS AND TOPOLOGICAL DIVISORS OF ZERO
In his original paper Mazur [57] also announced a companion theorem.

THEOREM 4.1. [Mazur]. A real normed algebra A satisfying ||xy|| =
HxH Hy || is isomorphic to R, C, or H.

It is particularly worth noting that Theorem 4.1 (as stated in Mazurs’
paper) carries no assumption that 4 has an identity element. Our goal in
this section is to prove a generalization of this theorem due to Irving Ka-
plansky [53]. Its formulation depends on the concept of a topological
divisor of zero in a normed algebra introduced by Shilov in 1940 [77]. An
element x of a normed algebra is said to be a topological divisor of zero
(t.d.z.) if there is a sequence ,, || », || = 1, such that xy, —» 0 or y,x — 0.
Kaplansky’s result is then:

THEOREM 4.2. [Kaplansky]. If A is a real normed algebra having no
nonzero topological divisors of zero, then A is isomorphic to R, C, or H.

The development of the proof below closely follows Kaplansky’s line
of reasoning except for changes made to avoid the use of algebraic results
not established here and instead to take advantage of Theorem 2.1. Mazur’s
original proof of Theorem 4.1 used algebraic results analogous to some
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facts of algebraic number theory and a form of Frobenius’ theorem not
assuming an identity element. Here, however we will adhere as closely as
possible to techniques in the spirit of the theory of normed algebras.

The recurrent theme of the nonemptiness of the spectrum of any element
of a complex normed algebra will again surface in dealing with algebras not
necessarily having an identity. Consequently a suitable definition of the
spectrum is required for algebras without identity, in which every element is
a fortiori singular. In any ring define a binary operation x oy = x + y
— xp. It is easily verified that o is associative and has 0 as a two-sided
identity. An element y, necessarily unique, is called the quasi-inverse of
xif x oy =0 = yox. If y exists, x is said to be quasi-regular, and its
quasi-inverse is denoted x’. If no such y exists, x is quasi-singular. The set
of quasi-regular elements of a ring A4 is then a group under the circle opera-
tion. If 4 has an identity element 1, the relation 1 — (x oy) = (1—x) (1 —y)
shows that x is quasi-regular if and only if 1 — x is invertible. Guided
by these observations, it is standard to formulate a definition of spectrum
without reference to an identity. If x e 4, an algebra over C, a nonzero
complex number A belongs to the spectrum o (x) of x if and only if x/A
is quasi-singular. The spectrum will contain O unless 4 has an identity and
x is invertible. For real algebras the spectrum is defined as before via the
complexification, whence a nonzero complex number o + if o (x) if
and only if 2ux—x?)/(a®+B?) is quasi-singular. It is easy to check that
this definition coincides with the original one when 4 has an identity.

We now survey some basic properties pertaining to the concepts just
introduced. In what follows 4 denotes a complete normed algebra over R
or C unless the contrary is stated.

ProrosITION 4.3.  Every x in A satisfying H X H < 1 is quasi-regular

with x' = — ;1 X" and || x" || <[] x ||/ = |x]]
Proof. The geometric series Y x" converges by completeness and
n=1

x - ’;1 x" + x ;1 x" = 0. The bound on || x’ || follows by applying

the triangle inequality to x’ = —x + xx'.

ProrosiTiON 4.4, If y is quasi-regular, so is y + x for H X H <k
= YA+, and ||+ =y || <] [/~ ][x])) &.




— 108 —

Proof. If ||x|| <k, |[|[x—x || <||x]|A+|y|D <1, so u=x |
— xp' is quasi-regular. Since (y+x) oy’ = u, y" ou’ is a right quasi-
inverse for y + x. Repeating the argument for x — y'x we find that y + x
also has a left quasi-inverse. Thus y + x is quasi-regular and (y+x)’
=y’ ou'. Moreover (y +x)’ — y" = y'ou’ —y' =u — yu,sol|| (y+x)
=y ] <A ID T[T < [l (e Q= [l < ] ] {1 D
(U= {llf a1y = 1] * {l/Ge=|x[ &

CoOROLLARY 4.5. (a) The set QR of quasi-regular elements of A is
open and y — y' is continuous.

(b) If A has an identity, the set G of invertible elements is open and
y =y~ s continuous.

Proof. Part (a) follows immediately from Propositions 4.3 and 4.4.
SinceG =1 — QRandy ™' =1 — (1—y) forye G, (b) follows from (a).

COROLLARY 4.6. The spectrum of any element is closed and bounded.

Proof. If A€o (x),A # 0, x/2is quasi-singular so || x/A || = | 2| *||x ||
> 1 by Proposition 4.3. Thus | A ! < H X H for all Aeo(x). If 1 ¢o0(x), I
A # 0, then x/A is quasi-regular. Since QR is open x/u will be quasi-regular
for all u sufficiently near A. If 0 ¢ o (x), then xe G, so 4 — xe G for all 1
sufficiently near 0. Thus C \ ¢ (x) is open and o (x) is closed.

COROLLARY 4.7. If y is quasi-regular, then [(y +1y) —y']/A - (¥)*
-y as A - 0.

Proof. Taking x = Ay in Proposition 4.4 so that u = A (y—yy’)
= —Ay’ we have [(y+2y) = y]/A = [(=4p") — y' (=2»)]/A I
= Zl (=D =T - () —y as A 0.

Even if 4 has no identity element we may speak of 4 — x being a topo-
logical divisor of zero for any scalar 4, i.e., Ay, — xy, > 0 or Ay, — y,x

— 0 for a sequence y,, [ Vu [ = 1. With this convention we have the
following result:

PrOPOSITION 4.8. (a) If x belongs to the frontier of QR, then 1 — x
is a td.z.

(b) If A has an identity and x belongs to the frontier of G, then x ¥
is a td.z. |
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Proof. (a) Since QR is open, X is quasi-singular and x, — x where
x,€ OR. Now {x,} is not bounded; for otherwise x ox, = (x—x,)
— (x—x,) x, implies that || x ox, || < 1 and hence x ox, € QR for large n.
This would mean x € OR. Let z, = x,/|| x,||. Then z, — xz, = (x—X,)/
| x || = (x—x) 2z, — x/|| x, || = 0. Part (b) follows from (a) since G = 1

~ OR.

PROPOSITION 4.9.  Suppose A is a real normed algebra. If x is a t.d.z.
in the completion or complexification of A, then x isatd.z.in A.

Proof. In the case of the complexification we suppose x is a t.d.z. in
A, so we have, say, x (a,+1b,) — 0 where a,, b, € 4 and || a, + ib, | = 1.
Then xa, — 0 as xb, — 0. Not both {a,} and {b,} can converge to zero,
for then a, + ib, — 0. If @, — 0, by taking subsequences if necessary and
normalizing we can obtain xa, - O where H a, || = L.

In the case of the completion suppose x is a t.d.z. in the completion
A’ of A. Then xy, — 0 for y,e A" and ||y, || = 1. Using the density of
A in A’ and constructing a suitable “diagonal” sequence we can choose
z, € A such that xz, — 0 and z, — 0. It follows that x is a t.d.z. in 4.

The following lemma, crucial to the proof of Theorem 4.2, employs the
same technique Gelfand used to prove the Mazur-Gelfand theorem to
establish a necessary condition for the spectrum of an element to be “de-
generate”, i.e., {0}.

Lemma 4.10. If o (x) = {0}, then x isatdz.

Proof. We may, of course, assume that x # 0, and by Proposition 4.9
it suffices to consider the complex case. Since Axe QR for all 1e C we
can consider {()L,x)’ tle C}. This set must be unbounded. Otherwise for
any continuous linear functional f on 4, 2 — f [(Ax)"] would be bounded
and by Corollary 4.7 entire. Liouville’s theorem implies that f must be
constant. Therefore f (0) = f (1), 1.e., 0 = f (x). Since f was arbitrary
the Hahn-Banach theorem implies that x” = 0, so x = 0, contradicting our
assumption. Thus we may choose a complex sequence A, — oo such that
¥, = (4,x)" is unbounded. Letting z, = y,./|| y,
Jull vl = x/|| yu || + 24/% — 0. Thus x is a t.d.z.

By examining the proof of Corollary 4.7 in the case where it is applied
above and by using the “completion” part of Proposition 4.9 one can
omit the completeness of 4 from the hypothesis of Lemma 4.10. We shall,
however, not need this in the proof of Theorem 4.2 to which we now turn.

we have xz, = y,xy,/
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Proof of Kaplansky’s Theorem (4.2). The crux of the proof is to show
that A must have an identity element. Then it is easy to see that 4 is a divi-
sion algebra so that Mazur’s Theorem 2.1 applies. Let x be any nonzero
element of A and let B be the complexification of the completion of A.
Since x is not a t.d.z. in B, ¢ (x) contains nonzero elements; it is also closed
and bounded. Therefore we may choose 4 = « + if # 0 belonging to
the frontier of o (x). Then z = (2 x—x?)/(a*+ %) is a quasi-singular
element which is the limit of quasi-regular elements. By Proposition 4.8
1 — zis a t.d.z. in B, hence in 4. For each y in A4 it follows that y — yz
and y — zy are t.d.z.; thus yz = y = zy for all y in 4. So A4 has an identity
element. The set S = {xeA :x #0 and x is singular} 1S open since S
does not meet the frontier of G. Then A4\ {O} = Gu S, where Gn S
= ¢, so either 4\ {0} is disconnected or S = @. The former condition
occurs only if dimgA4 = 1 [see Lemma 4.12 below for details.] Then 4 ~ R
and the conclusion holds. The latter immediately implies that A is a division
algebra, and Theorem 2.1 concludes the proof.

Since a normed algebra satisfying || xy || = || x|| || » || can have no
non-zero topological divisors of zero, Theorem 4.2 implies Theorem 4.1.
The hypothesis of 4.1 can be weakened slightly:

CorROLLARY 4.11. If A is a real normed algebra satisfying H Xy { {
> f H X H H ¥ H for some positive constant [ and all x, y, then A is
isomorphic to R, C, or H.

If the multiplicative norm condition || xy|| = || x|| || »|| holds for
all x, y in a Banach algebra 4 with unit e and || e|| = 1, then certainly
L= lxx"|| = | x]| ||~ ie,||x~"| = || x]||~" for all invertible x

in A. R. E. Edwards [37] has shown that in a real Banach algebra with
identity this condition also characterizes the classical division algebras
over R. This follows in an elementary way from Mazur’s Theorem 2.1.
We begin with two lemmas both of which are well-known.

LeEMMA 4.11. Let A be a Banach algebra with identity e and G the
group of invertible elements of A. If {x,} = G, ||x3']|| is a bounded
sequence, and x, — x, then xeG.

Proof. Suppose || x,' || <M for every n. The identity x3," — x,’

= x3," (%p—X,) x5, then implies that || x7" — x7' || < M? || x, — xn ||5
hence { x}l} is Cauchy. Let y = lim x7,'. The continuity of multiplication
gives xy = e = yx so that xe G.
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LEMMA 4.12. If A is a normed linear space with dimgA > 2, then
A\ {0} is connected.

Proof. Letaandbbelongto A\ {0}.If aand b are independent over R,
the segment {ta + (1—2)b:0 <t < 1} does not contain 0. If a and b
are dependent over R, we can choose ¢ independent of a (hence of b) over
R since dimgA > 2. Thus both g and b can be joined to ¢ by a line not
containing 0. This proves A4 \ {O} is arcwise connected.

THEOREM 4.13. [Edwards]. If A is a Banach algebra with identity such
that || x~'|| = || x||7" for all invertible x, then A is isomorphic to R,
C, or H. If A is a complex Banach algebra satisfying this condition, A is
isomorphic to C.

Proof. If dimgAd = 1, the conclusion is obvious. Otherwise we show
that 4 is a division algebra and apply Mazur’s theorem. According to
Corollary 4.5 (b), the set G of invertible elements is open in 4, hence in
A\, {0}. We show that G is also closed in 4\ {0}. Let x, € G and x, — x
#0. Then ||x3' ] =] x|~" Since |[x,|~" - | x||7' >0, we see
that || x,||”" is a bounded sequence of real numbers. By Lemma 4.11,
xe G with x7* —» x~'. As we are assuming dimgd >2, 4\ {0} is con-
nected by Lemma 4.12 and G = A\ {0} as required.

COROLLARY 4.14. If A is a Banach algebra with identity and there is
a constant o Ssatisfying H X H H x ! H <« H xx ! H for all invertible x,
then A is isomorphic to R, C, or H.

Proof. This weaker condition on the norm also guarantees that || x," ||
is a bounded sequence.

M. Seetharama Gowda [42] has given a different proof of the complex
version of Edwards’ theorem based on numerical range. He requires only
that the set {xe A :|[x]|| || x™'|| = 1} have nonempty interior. This
apparently weaker condition is also proved sufficient by S. Aurora [17]
in a version of Edwards’ theorem in the more general context of metric
rings.

In the direction of the results of Gowda and Aurora one might study
the impact of imposing various conditions dealt with in this survey on a
nonempty open subset of the algebra rather than on the whole algebra.
For example, || xy || = || x|| || » || where x, y range over an open set U,
or |[xx"|| = || x|| || x|| for all x in an open subset U of QR. These
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conditions can be considered for algebras with or without identity. As we
shall see later B. Aupetit [9] has obtained some theorems of this kind.
By considering the incomplete normed algebra of polynomials with

n n

complex coefficients and norm || Y x| = Y el it is

i= i=

easy to see that completeness is essential in Edwards’ theorem.

5. NORM CONDITIONS AND COMMUTATIVITY

The investigation of further conditions on the norm of a normed algebra
lead to consideration of the spectral radius, defined by

p(x) = lim |[x"|]'".

n— o

We list several of its properties for later reference (see [73, pp. 10, 30]).
For elements x and y in a normed algebra A4:

(D) p ) <|| x|
2 p(xy) =p(x) and pE") = p )"

B)pxty)<p(x) +p(y) and pxy)<<p@p(y)
if xy = yx.

(4) p (x) = sup {

In view of the exceptionally strong consequences of the multiplicative

"
A

: L€ (x)} provided A4 is complete.

norm condition ||xy || = || x|| ||»]| it is natural to inquire into the
algebraic implications of the similar condition
X = 11x]*. (*)

One familiar consequence of (*) in a normed algebra A is that

p(x) =[xl (**)

for all x in 4. On the other hand since p always satisfies p (x*) = p (x)?,
the conditions (*) and (¥*) are equivalent in any normed algebra. Their
importance can be surmised by noting that they imply the Gelfand represen-

tation for commutative Banach algebras is isometric.
Almost simultaneously Claude Le Page [54] and R. A. Hirschfeld

together with W. Zelazko [47] discovered independently that (*) in fact
implies the commutativity of 4. Although both papers use essentially the
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