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for some complex 1. Suppose to the contrary that x — le # 0 for all A
‘n C. Since A is a division algebra, it follows that x — le is invertible for
all 1, i.e., (x—Ae)~ ! exists. Let x (1) = (x—Ae)”'. By the Hahn-Banach
theorem there is a bounded linear functional L on A such that L (x~ ) = 1.
Define g : C—» C by g (1) = L(x(1); then g (0) = 1. Moreover, g is
an entire function. Indeed, since x (1) — x(u) = (A—w) x () x (u) for
4, win C, it follows that

lim 7 B W = lim L(x()x(w) = L (x(w?).

Aop A—wu Aop
Further |g (1) | <||L|| || x () || and since x (1) = O as | A= 0, g ()
— 0. By Liouville’s theorem the bounded entire function g is constant;
hence g = 0. This is a contradiction since g (0) = 1, and the proof is com-
plete.

The spectrum of an element x of a complex algebra with identity e is
the set o (x) = {leC :x — le 18 singular}, so Gelfand’s proof can be
viewed as a demonstration that the spectrum of any element of a complex
normed algebra with identity is nonempty. This fact together with the
application of Liouville’s theorem forms a continuous thread running
through the generalizations and related results presented in this paper.

3. CLASSIFICATION OF REAL NORMED DIVISION ALGEBRAS

Although it does not appear to be widely known, Mazur’s original paper
on normed division algebras [57] considers only the case of algebras over R.
If a real division algebra is also finite-dimensional, the classical theorem
of Frobenius classifies it as R, C ,or H. Mazur demonstrated finite-dimen-
sionality in two steps: first he used a rather lengthy argument involving
analytic function theory to show that it cannot contain a subalgebra iso-
morphic to the rational functions in one indeterminate with real coefficients.
He then quoted an algebraic theorem to the effect that every real infinite-
dimensional division algebra must contain such a subalgebra. The details
of the first step may now be found in W. Zelazko’s book [109, pp. 18-22].

F. F. Bonsall and J. Duncan [30] have given a more direct and self-
contained proof of Mazur’s theorem, which relies on precisely the same
analytic fact as Gelfand’s proof of the complex version; namely that every
element of a complex normed algebra with identity has nonempty spectrum.
They modify a standard proof of Frobenius’ theorem (vid. Pontrjagin
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[68, pp. 158-163]) by using the nonemptiness of the spectrum instead of
finite-dimensionality to obtain the first major step. The remainder of the
proof, though long, consists of entirely elementary algebraic verifications.
We shall not reproduce this proof here.

If 4 is an algebra over R, its complexification A is analogous to the
construction of C from R. (We may think of A. as 4+iAd.) Ac will have
a unit if and only if 4 does. Moreover if 4 is a normed algebra, the norm
may be extended to A, in a standard fashion (vid. Rickart [73, pp. 8-9])
so that the extension is complete whenever the original norm on A4 is.
The spectrum o (x) of an element x in A is defined to be its spectrum in
Ac. Thus if 4 has a unit e, « + if € (x) if and only if the element
(e« +ip) (e, 0) — (x, 0) is singular in 4. Again by analogy with the complex
numbers it is immediate that if @ and b are commuting elements of A, (a, b)
is invertible in A if and only if a® + b* is invertible in 4. Thus « + if
€ o (x) if and only if («—x)? + 2 is singular in A.

4. NORM CONDITIONS AND TOPOLOGICAL DIVISORS OF ZERO
In his original paper Mazur [57] also announced a companion theorem.

THEOREM 4.1. [Mazur]. A real normed algebra A satisfying ||xy|| =
HxH Hy || is isomorphic to R, C, or H.

It is particularly worth noting that Theorem 4.1 (as stated in Mazurs’
paper) carries no assumption that 4 has an identity element. Our goal in
this section is to prove a generalization of this theorem due to Irving Ka-
plansky [53]. Its formulation depends on the concept of a topological
divisor of zero in a normed algebra introduced by Shilov in 1940 [77]. An
element x of a normed algebra is said to be a topological divisor of zero
(t.d.z.) if there is a sequence ,, || », || = 1, such that xy, —» 0 or y,x — 0.
Kaplansky’s result is then:

THEOREM 4.2. [Kaplansky]. If A is a real normed algebra having no
nonzero topological divisors of zero, then A is isomorphic to R, C, or H.

The development of the proof below closely follows Kaplansky’s line
of reasoning except for changes made to avoid the use of algebraic results
not established here and instead to take advantage of Theorem 2.1. Mazur’s
original proof of Theorem 4.1 used algebraic results analogous to some
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