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KLASSIFIKATIONSTHEORIE ENDLICH-DIMENSIONALER
ALGEBREN IN DER ZEIT VON 1880 BIS 1920

von Dieter HAPPEL

In diesem Artikel wollen wir einige der unbeachtet gebliebenen
Ergebnisse der Klassifikationstheorie endlich-dimensionaler assoziativer
Algebren iiber den komplexen Zahlen C wieder aufgreifen und Zusammen-
hinge zu heutigen Fragestellungen aufzeigen. Betrachtet man die Be-
schreibung des damaligen Standes der nicht-kommutativen Algebra,
etwa in der Mathematikgeschichte Bourbaki’s [3], so findet sich wenig
iiber die konkreten Resultate. So ist es nicht unser Ziel die Anfdnge der
allgemeinen Theorie zu analysieren, wie sie sich in ihrer weiterentwickelten
Form in den Lehrbiichern findet, sondern vielmehr die Methoden zu
beschreiben, wie damals die Algebren kleiner Dimension wirklich klassi-
fiziert wurden.

In der Mitte des neunzehnten Jahrhunderts stellte sich, aufbauend
auf den Untersuchungen der komplexen Zahlen durch Gaull, die Frage,
ob auch nicht-kommutative Korper existieren. Dies wurde bekanntlich
durch Hamilton mit der Entdeckung der Quaternionen positiv beantwortet.

In der Folgezeit wurden immer neue endlich-dimensionale Algebren
beschrieben. Zum Beispiel weist Study [47] auf Vorlesungen von Cayley
und Weierstrass hin, in denen die zwei-dimensionalen Algebren explizit
klassifiziert wurden.

Jedoch war die Beschiftigung mit derartig allgemeinen Strukturen
keineswegs unbestritten. So schreibt Study in [47]:

,,In weiten Kreisen, namentlich in Deutschland, ist die Ansicht ver-
breitet, dass die Systeme von komplexen Zahlen oder &hnliche Algo-
rithmen nun iiberhaupt gar keinen Nutzen hiitten, ausgenommen allein
die gewdhnlichen komplexen Zahlen; und man begriindet dies damit,
daf} durch sie nichts geleistet werden konnte, was nicht ,ebenso gut® auch
chne sie zu leisten wire.*

Als Gegenargument gibt er Beispiele fiir die Bedeutung der Quaternionen
m der analytischen Geometrie und zeigt, daB endlich-dimensionale Algebren
in natiirlicher Weise beim Studium von Transformationsgruppen auftreten.
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Fir ihn ist die Untersuchung endlich-dimensionaler Algebren keine ,,spiel-
ende und willkiirliche Wahl der Gesetze des elementaren Rechnens®,
sondern eine neue ,,Methode der analytischen Geometrie, zu einem ganz
bestimmten Zwecke erfunden®, ndmlich zur Beschreibung von Systemen
von linearen Transformationen auf Vektorrdumen, und damit ,,eine zweck-
méaBige Methode, die zwar so wenig, als itiberhaupt irgend eine Methode
unumginglich nothwendig ist, aber doch zur Zeit keineswegs ebenso gut
auch entbehrt werden kann... In der Art der Anwendung ist es durchaus
vergleichbar mit der Verwertung der Functionen einer complexen Verdnder-
lichen in der Lehre von der conformen Abbildung, worin die complexen
Zahlen auch nicht in ihrer Eigenschaft als Erweiterung der reellen Zahlen,
sondern als ein analytisch-geometrischer Algorithmus zur Verwendung
gelangen... Gerade die Mathematiker, die am eifrigsten gegen die Quater-
nionen und dhnliche Calculs zu Felde ziehen, machen bei geometrischen
Untersuchungen von dem Calcul der gewdhnlichen complexen Zahlen
unbedenklich den ausgedehntesten Gebrauch. Sie berufen sich mit Unrecht
auf die Autoritit von Gaull, um die hier bekdmpften Anschauungen zu
stlitzen: Wir besitzen von Gaul} ein authentisches Zeugnis, das iiber seine
Stellung zu dieser Frage keinen Zweifel 143t. Warum soll es auch durchaus
nicht erlaubt sein, eine abkiirzende Bereicherung zu gebrauchen, wenn
sie bequem und sachgemiB ist 7 Und Study fligt als FulBBnote hinzu:
,,Jch freue mich, hier Herrn Dedekind zu begegnen, der sich in dhnlichem
Sinne iiber die Quaternionen ausgesprochen hat.*

Die Bibliographie, die wir am Ende des Artikels zusammengestellt
haben, zeigt, dall sich trotz dieses Unbehagens sehr viele Mathematiker
mit diesem Thema beschéftigt haben.

I. Die IDEEN VON STUDY

Im Jahre 1890 veroffentlicht Study einen bemerkenswerten Ubersichts-
artikel [47], der sehr viele Ideen enthilt, die die damalige Entwicklung
befruchteten, aber auch einiges was nicht weiterverfolgt wurde und erst
heute im Wechselspiel zwischen algebraischen und geometrischen Methoden
betrachtet wird.

Zunichst wollen wir die Definition einer endlich-dimensionalen asso-
ziativen Algebra mit Eins iiber den komplexen Zahlen rekapitulieren,
wie sie in dieser Arbeit enthalten ist. Dabei wollen wir nicht die ungeheure
Vorarbeit von Grassmann [15], Pierce [31] und anderer Mathematiker




93

vergessen, die die Grundlagen entwickelten. Wiahrend des ganzen Ab-
schnitts benutzen wir moderne Terminologie, und fiigen in Klammern die
damals gebrduchlichen Termini ein.

Sei nun e, ..., e, eine Basis (» Haupteinheiten) von C". Die Elemente
von C" (extensive GrofBen) sind also die moglichen Linearkombinationen
mit komplexen Koeffizienten. Das Produkt wird durch folgende Bedin-
gungen definiert [47, p. 283f].

,,1. Es muss das Produkt von irgend zweien der extensiven Groflen mit
denselben Haupteinheiten aufgefalit werden konnen. Die nothwen-
dige und hinreichende Bedingung hierfiir ist, vermdge des distributiven
Gesetzes, das Bestehen von 7?2 Relationen der Form

(1) €, = Yiks€s

gk

N

worin die Coeflicienten y;,, gewohnliche reelle oder complexe Zahlen
vorstellen.

2. Es muss durch irgend drei der extensiven GréBen das in der Formel
(2) (ab)c = a(bc)

ausgesprochene sogenannte associative Gesetz der Multiplikation
erfillt sein.

Die nothwendige und ausreichende Bedingung hierfiir ist das Bestehen
saimmtlicher Relationen der Form

(3) (esex) €; = ei(ekej) (i,J, k=1, vy 1)

d.h. das Bestehen des folgenden Systems von quadratischen Iden-
titdten fiir die unter (1) eingefithrten Constanten Viks

(4) Zl Yikes Vsjr = Zl Yijs Vist (l> kajat = 19 >n)

3. Es muss unter den extensiven GréBen eine GroBe e° vorhanden sein,
die den beiden Gleichungen
(5) e’x =x, xe® =x
unabhingig von x geniigt.

Wir sehen, daB sich die Bedingungen (1) bis (5) von der heutigen Defi-
nition einer endlich-dimensionalen assoziativen Algebra mit Eins nicht
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unterscheiden. Frither wurden diese Systeme auch Systeme von complexen
Zahlen oder hypercomplexe Zahlensysteme genannt. Im folgenden ver-
stehen wir unter einer Algebra immer eine, die den Bedingungen (1) bis (5)
geniigt. Study’s weitere Ausfithrungen enthalten nun den folgenden Satz
uber die Menge Alg, aller Algebren einer festen Dimension #.

SATZ: Alg, ist eine offene Untervarietdt einer affinen Varietdit.

Sein Beweis: Die Bedingung (4) ist eine abgeschlossene Bedingung
auf der Menge der Strukturkonstanten (y,, ; i, k, s=1, ..., n). Die Bedin-
gung (5) 14Bt sich dadurch interpretieren, dal gewisse Determinanten in
den Strukturkonstanten nicht verschwinden.

Das zentrale Problem beschreibt Study nun wie folgt [47, p. 288 f].

,»Als eine Fundamentalaufgabe in der Theorie der Systeme von com-
plexen Zahlen muss die bezeichnet werden: ,Alle Systeme von complexen
Zahlen mit » Haupteinheiten zu bestimmen.*

Man kann die Aufgabe nicht etwa so stellen: ,Das allgemeinste System
von complexen Zahlen in » Haupteinheiten zu finden’; denn es ist nicht
von vornherein klar, und, wie die ndhere Untersuchung zeigt, auch nicht
richtig, dal3 die Systeme von Constanten 7y, die den Bedingungen (1),
(4), (5) geniigen, eine irreducibele Mannigfaltigkeit bilden: Sie zerfallen
vielmehr in verschiedene Gebiete, deren allgemeinste Reprisentanten
unter sich gleichwertig und als gleich allgemein zu betrachten sind, insofern
keines von ihnen aus einem anderen durch einen Grenziibergang erhalten
werden kann. Da wir uns aber iiber die Natur dieser Gebiete in volliger
Unkenntnis befinden, so bleibt uns nicht iibrig, als bei kleinen Werten
der Zahl n zu versuchen, die vorhandenen Systeme unmittelbar zu be-
stimmen.*

Also wire nach Study eine der Hauptaufgaben die irreduziblen Kompo-
nenten von Alg, zu bestimmen. Dieses Problem, welches damals nicht
gelGst wurde, ist von Gabriel [60] wieder aufgegriffen und mittels algebraisch
geometrischer Begriffsbildungen formuliert worden. Dabei betrachten
wir die folgende Situation. Auf Alg, operiert die allgemeine lineare Gruppe
durch Basiswechsel. Die Bahnen dieser Operation sind natiirlich die Iso-
morphieklassen. Es gibt zwei verschiedene Moglichkeiten fiir die irreduziblen
Komponenten: entweder sie enthalten eine offene Bahn, oder sie enthalten
eine offene Teilmenge, die Vereinigung von unendlich vielen Bahnen
gleicher Dimension ist. Die Algebren, die diese Bahnen erzeugen, sind die
,,allgemeinsten Reprisentanten® im Sinne von Study.
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Die Beschreibung dieser Algebren, aus denen durch Entartung dann
alle anderen Algebren entstehen, gehort zu einem wichtigen Problem in der
Theorie der endlich-dimensionalen Algebren, welche neben den Anwen-
dungen in der Darstellungstheorie [60] und der algebraischen Geometrie
[57] Einblicke in die komplizierte Struktur aller Algebren ermdglicht.

Die Bedeutung der Arbeit Study’s 1468t sich aber auch an sehr konkreten
Beitrigen ablesen, die wir nun besprechen wollen. Er diskutiert die Begriffe
[somorphie und Antiisomorphie (reciproke Algebra) und fiihrt die folgende
interessante Invariante ein. Sei A eine n-dimensionale Algebra. Dann ist
die Ordnung ord (4) von A definiert als die groBte Zahl 7, fiir die es ein
xeAd gibt, so daB 1 = x° x,..,x'~' linear unabhingig sind. Diese
Invariante ermdoglicht eine grobe Klasseneinteilung der Algebren, welche
bei den spéteren Klassifikationen (siehe I1.) benutzt wurde. Study betrachtete
insbesondere die Klasse der Algebren, fiir die die Ordnung gleich der
Dimension ist und formulierte den folgenden Satz:

SaTZz: X = { A e Alg, | ord (4) = n} ist eine irreduzible Varietdt.

Beweis: Zunidchst bemerken wir, dal3 alle Algebren in X kommutativ
sind und daB es eine Bijektion zwischen den Partitionen von n und den
Isomorphieklassen von Algebren in X gibt. Falls A = (4, ..., 4,) eine

,
Partition von 7 ist, so definieren wir 4 = [] C [x]/(x*%). Weiter sehen
i=1

wir, daB die Algebra zur Partition A = (1, ..., 1), also C" mit kompo-
nentenweiser Multiplikation nach A4, entartet. Also ist X irreduzibel.
(Man kann das Entartungsverhalten der Algebren in X mit Hilfe einer
geeigneten Anordnung der Partitionen beschreiben [64].)
In dieser Arbeit klassifiziert Study schlieBlich die Algebren der Dimension
vier und fiigt die damals schon bekannten Tabellen in den kleineren Dimen-
sionen hinzu. Er vergifit dabei allerdings im Falln = 4 die folgende Algebra:

[aOc l
A = dbO0}, ab,c,deC
]OOb J

Ein zweiter ausfiihrlicher Teil beschiftigt sich detailliert mit Zusam-
menhdngen zur Theorie der Transformationsgruppen, die von Lie ein-
gefiihrt wurde. Weitere Informationen dazu finden sich in [27].
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JI. ALLGEMEINE KIASSIFIKATIONSMETHODEN

Die geometrischen Ideen von Study haben die spitere Entwicklung
nicht beeinflult. Die folgende Zeit war durch ein Wechselspiel zwischen der
Entwicklung allgemeiner Struktursdtze und Versuchen, die Algebren
kleiner Dimension tatsdchlich zu klassifizieren, charakterisiert. Das Haupt-
ziel war jedenfalls die Beschreibung einer Normalform fiir endlichdimen-
sionale Algebren, aus der man dann durch explizite Berechnungen die
einzelnen Isomorphietypen ableiten kann. Solche Normalformen wurden
etwa in [21], [36] und [27] formuliert. Wir verzichten hier darauf, diese
Normalform zu skizzieren: Man wiirde sie heute unmittelbar aus mittler-
weile bekannten Struktursitzen, wie denen von Wedderburn-Malcev und
Wedderburn-Molien ableiten, die eben bei der Beschéftigung mit dem
Normalformproblem entwickelt wurden. Diese allgemeinen Ergebnisse
haben sich ja in den Lehrbiichern tradiert. Wir wollen nun einige Ergebnisse
erldutern, die sich im Zusammenhang mit der Klassifikation in kleinen
Dimensionen als niitzlich erwiesen haben.

Scheffers Beitrdge [36] zu der Theorie ermdglichten einige Verein-
fachungen im Aufstellen der Algebren einer festen Dimension. Zunéchst
fiihrte er den noch heute tiblichen Zerlegbarkeitsbegriff ein. Da die Klassifi-
kation induktiv durchgefiihrt wurde, konnte man sich somit auf unzerleg-
bare Algebren (also Algebren ohne nicht-triviale zentrale Idempotente)
beschranken. Er unterteilte die Algebren in Quaternionensysteme und
Nichtquaternionensysteme. Quaternionensysteme sind dadurch gekenn-
zeichnet, dal3 sich die Algebra aller 2 X 2-Matrizen iiber C als Unteralgebra
einbetten 14B3t. Und er bewies, dal3 es keine unzerlegbaren Quaternionen-
systeme der Dimension fiinf oder sechs geben kann.

Die Nichtquaternionensysteme mit mehreren orthogonalen Idem-
potenten bereiten naturgemill keine groBen Schwierigkeiten. Somit lag
also die Hauptschwierigkeit bei der Klassifikation der lokalen Algebren.
Es gab einige Ansitze [44], [45], um lokale Algebren allgemein zu klassifi-
zieren. Aber dies fithrt zu Resultaten, die keinen Hinweis enthalten, ob
die damit verbundenen Rechnungen in hoheren Dimensionen iiberhaupt
durchfihrbar sind.

Bei der Klassifikation der lokalen Algebren wurde eine schon erwadhnte
Idee von Study aufgegriffen. Man unterteilte diese Algebren nach ihrer
Ordnung und konnte fiir gewisse Extremwerte eine vollstindige Klassifi-
kation durchfithren. Wir wollen dies an einem Beispiel vorfiihren. Sei 4 u
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eine lokale Algebra der Dimension #n (n>4) und ord (4) = n — 1. Es
gibt also x, y im Radikal von 4, so daB x, x?, .., X"~ 2.y eine Basis bilden.
Man sicht leicht, daB wir annehmen kénnen: xy = 0, yx = ax" "%, y?
= bx"" 2 mit a,be C. Und die Voraussetzung n > 4 erlaubt nun, die

Parameter a, b wie folgt zu wihlen:

(a, b) A

(0,0) k[x,y]/(x""1 y2, xy)

(0, 1) k[x,y]1/(x""% =%, xy)

(1,0) k<x,y>/[(x""?=yx,y*, xy)

(1, 1) k<x,y>[(x""2=y*xy,yx—y%)

(wobei k < x,y > die freie Algebra in zwei Erzeugenden bezeichnet)
Diese Ergebnisse sind in [27], [36] enthalten. Eine weitere Moglichkeit zur
Untersuchung der lokalen Algebren liefert der Begriff des Geschlechts
einer lokalen Algebra. Dies ist die Zahlenfolge (dim J/J'* 1), i = 0,1, 2, ...,
mit J = rad 4. Diese Unterteilung in grobe Klassen (nach Ordnung und
Geschlecht) kann man sehr gut in der Arbeit von Voghera [51] erkennen.

Wir wollen abschlieBend festhalten, daf3 in schwierigen Fillen (z.B.
ord (A) = 3) umfangreiche Rechnungen erforderlich waren, um diese
grobe Einteilung so zu verfeinern, daBl man die einzelnen Isomorphietypen
erhdlt. Da in hoheren Dimensionen, ndmlich fiir » > 4, die Klassifikation
nicht mehr endlich ist, ergab sich zusitzlich das Problem, einen minimalen
Parameterbereich fiir die unendlichen Serien anzugeben. Dieses Problem
wurde in einigen Fillen auch gelost.

So enthidlt die Arbeit von Study [47] folgende Multiplikationstabelle
einer Serie vierdimensionaler lokaler Algebren. Dabei bezeichne ¢, e,
¢,, e eine Basis der Algebra.

€o ey e, es
€o €9 €q €, €3
ey e, e3 e O
62 62 —83 C€3
€3 e; 0 0 0

Der minimale Parameterbereich fiir ¢ ist die projektive Gerade iiber C.
Genauere Untersuchungen zur geometrischen Struktur solcher Para-
meterbereiche wurden jedoch damals nicht angestellt.

L’Enseignement mathém., t. XXVI, fasc. 1-2.
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I1I. SPEZIELLE ERGEBNISSE IN KLEINEN DIMENSIONEN

Das Hauptinteresse in dieser Periode lag ganz offensichtlich in der
expliziten Berechnung der Isomorphieklassen der Algebren einer festen
Dimension, nicht jedoch in einer allgemeinen Strukturtheorie. Dabei
wurde, wie im letzten Abschnitt erwihnt, immer eine der verschiedenen
typischen Normalformen zugrundegelegt, mittels Invarianten, wie Ordnung
und Geschlecht, eine grobe Klassencinteilung vorgenommen und diese
genauer untersucht. Leider sind jedoch die meisten der Tabellen nicht
korrekt: entweder sie sind nicht vollstdndig oder sie enthalten auch nicht-
assoziative Algebren, oder schlieB3lich sind einige der aufgefiihrten Algebren
isomorph. Wir wollen auf einige der Fehler hinweisen, nicht aber die
Randbemerkung von Scheffers in [35] vergessen.

,,Die nachfolgenden der Systeme sind mit aller bei so umfangreicher
Rechnung erforderlichen Sorgfalt bestimmt und von den {iberzdhligen
gesdubert worden. Sollten sich doch noch Fehler finden, was der Verfasser
nicht vermuthet, so bittet derselbe um Nachsicht.” Die Klassifikation der
Algebren bis zur Dimension vier ist in [47] enthalten. Wir hatten schon
erwihnt, dafl Study eine Algebra in der Dimension vier ausgelassen hatte,
die Tabellen der Algebren kleinerer Dimensionen sind dagegen vollstdndig.
Im Jahre 1890 bearbeiteten Scheffers [35] und unabhingig davon Rohr [33]
den Fall der fiinf-dimensionalen Algebren. Wir wollen kurz auf die Scheffer-
sche Klassifikation der kommutativen Algebren eingehen. Es gibt genau
zwanzig Isomorphieklassen von kommutativen Algebren. Scheffers erhalt 21
und tatsdchlich sind die folgenden zwei lokalen Algebren isomorph. Sei
X4, ..., X4 €ine Basis des Radikals. Dann findet sich als Algebra XIX folgende
Multiplikationstabelle

XIX X1 Xy X3 X4
X4 0 x, 0 0
X, Xys X3 x4 0
X3 x, O 0
X4 0 0 0

Wihlen wir nun als neue Basis y; = X,, ¥, = X3, Y3 = X4, V4 = X
— x5, so geht die Algebra iiber in:
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Y1 V2 V3 Va
Y1 V2 V3 0 0
Va2 V3 0 0 0
V3 0 0 0 0
Va 0 0 0 0

Und dies ist die Algebra (XX) in Scheffers Tabelle.

Ansonsten ist diese Liste der kommutativen Algebren der Dimension
flinf vollstdndig.

Die Algebren der Dimension sechs wurden von Voghera, Hawkes und
Starkweather studiert. Die kommutativen Algebren in dieser Dimension
betrachtete Hazlett [24]. In [51] bespricht Voghera die Resultate von
Hawkes [21] und Starweather [45]. Die Arbeit von Voghera enthilt wohl
die genaueste Tabelle der sechsdimensionalen Algebren zu dieser Zeit.
Wir mochten seine Resultate beziiglich der nichtlokalen unzerlegbaren
Algebren kommentieren. Zwei seiner Algebren (VI 134, VI 136 in seiner
Nummerierung) sind nicht assoziativ. Sei ndmlich ey, ..., ¢, eine Basis der
Algebra, so fiihrt er die folgenden beiden Algebren auf.

VI 134 | ey e, e; e, es eg VI 136 | e e, e; e, es eg
ey 0 0 0 0 0 e e, 0 0 0 ¢ O O
e, 0 0 0 0 e O e, 0 0 e 0 0 e
e; 0 e 0 e 0 O e 0 O e; 0 O
ey e; e, e3 e, 0 O e, e, e 0 e, 0 O
es 0 0 0 0 e O es 0 0 e3 0 es O
€ 0 0 0 0 0 e €g 0 0 0 0 0 e

aber (e3-e;) es # e3(ey e5) in VI134 und (e, eq) e; # e, (eg - €3)
in VI 136.

Sonst ist seine Liste dieser Algebren aber korrekt. Man sollte dabei
beachten, daf3 er die Multiplikationstabellen von antiisomorphen Algebren
nur einmal aufschreibt, und angibt, wann eine Algebra antiisomorph zu
sich ist. Insgesamt erhdlt man 2 unendliche Serien und 64 diskrete Iso-
morphietypen von nicht lokalen 6-dimensionalen Algebren.

In hoheren Dimensionen sind nur noch gewisse Klassen von Algebren
oehandelt worden. So beschreibt etwa Hawkes in [22] die sieben-dimen-
sionalen nichtlokalen Algebren.
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Wir wollen mit einigen ziemlich fliichtigen Bemerkungen tiiber die
weitere Entwicklung schlieBen. Die Theorie verzweigte sich in verschiedene
Richtungen. Die allgemeine Strukturtheorie der assoziativen Ringe, die
in [53] schon neue Ansdtze gegeniiber der bislang iiblichen Betrachtungs-
weise zeigt, wurde in den Biichern von Albert, Artin-Nesbitt-Thrall und
Jacobson zusammengefal3t, dabei verlagerte sich das Interesse im Falle
eines beliebigen Grundkorpers sehr bald auf die endlich-dimensionalen
Divisionsringe. Es gibt spdter nur wenige Artikel, die sich mit der expliziten
algebraischen oder geometrischen Klassifikation von Algebren beschéftigen.
Dies mag daran liegen, dal3 es nur eine geringe Hoffnung gibt, dieses Ziel
mit rein algebraischen Methoden zu erreichen. Wir wissen nur von zwei
Arbeiten, die die Klassifikation weiterverfolgten. Dies ist einmal ein Artikel
von Hausdorff [17] und dann insbesondere die Arbeiten von Scorza [41, 42].
Beide interessieren sich fiir Algebren iiber speziellen nicht algebraisch
abgeschlossenen Korpern und geben Klassifikationen bis zur Dimension
fiinf. Schon damals scheinen allerdings die dlteren Ergebnisse unbekannt
gewesen zu sein. So verweist Scorza lediglich auf die eingangs erwidhnte
Arbeit [47] von Study.

1V. BIBLIOGRAPHIE

Die Literaturangaben umfassen wesentlich mehr Arbeiten aus dem behandelten
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