
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 26 (1980)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: KLASSIFIKATIONSTHEORIE ENDLICH-DIMENSIONALER
ALGEBREN IN DER ZEIT VON 1880 BIS 1920

Autor: Happel, Dieter

DOI: https://doi.org/10.5169/seals-51060

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-51060
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


KLASSIFIKATIONSTHEORIE ENDLICH-DIMENSIONALER
ALGEBREN IN DER ZEIT VON 1880 BIS 1920

von Dieter Happel

In diesem Artikel wollen wir einige der unbeachtet gebliebenen

Ergebnisse der Klassifikationstheorie endlich-dimensionaler assoziativer

Algebren über den komplexen Zahlen C wieder aufgreifen und Zusammenhänge

zu heutigen Fragestellungen aufzeigen. Betrachtet man die

Beschreibung des damaligen Standes der nicht-kommutativen Algebra,
etwa in der Mathematikgeschichte Bourbaki's [3], so findet sich wenig
über die konkreten Resultate. So ist es nicht unser Ziel die Anfänge der

allgemeinen Theorie zu analysieren, wie sie sich in ihrer weiterentwickelten
Form in den Lehrbüchern findet, sondern vielmehr die Methoden zu
beschreiben, wie damals die Algebren kleiner Dimension wirklich klassifiziert

wurden.
In der Mitte des neunzehnten Jahrhunderts stellte sich, aufbauend

auf den Untersuchungen der komplexen Zahlen durch Gauß, die Frage,
ob auch nicht-kommutative Körper existieren. Dies wurde bekanntlich
durch Hamilton mit der Entdeckung der Quaternionen positiv beantwortet.

In der Folgezeit wurden immer neue endlich-dimensionale Algebren
beschrieben. Zum Beispiel weist Study [47] auf Vorlesungen von Cayley
und Weierstrass hin, in denen die zwei-dimensionalen Algebren explizit
klassifiziert wurden.

Jedoch war die Beschäftigung mit derartig allgemeinen Strukturen
keineswegs unbestritten. So schreibt Study in [47]:

„In weiten Kreisen, namentlich in Deutschland, ist die Ansicht
verbreitet, dass die Systeme von komplexen Zahlen oder ähnliche
Algorithmen nun überhaupt gar keinen Nutzen hätten, ausgenommen allein
die gewöhnlichen komplexen Zahlen; und man begründet dies damit,
daß durch sie nichts geleistet werden könnte, was nicht ,ebenso gut' auch
ohne sie zu leisten wäre."

Als Gegenargument gibt er Beispiele für die Bedeutung der Quaternionen
m der analytischen Geometrie und zeigt, daß endlich-dimensionale Algebren
in natürlicher Weise beim Studium von Transformationsgruppen auftreten.
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Für ihn ist die Untersuchung endlich-dimensionaler Algebren keine „spielende

und willkürliche Wahl der Gesetze des elementaren Rechnens",
sondern eine neue „Methode der analytischen Geometrie, zu einem ganz
bestimmten Zwecke erfunden", nämlich zur Beschreibung von Systemen

von linearen Transformationen auf Vektorräumen, und damit „eine
zweckmäßige Methode, die zwar so wenig, als überhaupt irgend eine Methode
unumgänglich nothwendig ist, aber doch zur Zeit keineswegs ebenso gut
auch entbehrt werden kann... In der Art der Anwendung ist es durchaus

vergleichbar mit der Verwertung der Functionen einer complexen Veränderlichen

in der Lehre von der conformen Abbildung, worin die complexen
Zahlen auch nicht in ihrer Eigenschaft als Erweiterung der reellen Zahlen,
sondern als ein analytisch-geometrischer Algorithmus zur Verwendung
gelangen... Gerade die Mathematiker, die am eifrigsten gegen die Quater-
nionen und ähnliche Calculs zu Felde ziehen, machen bei geometrischen
Untersuchungen von dem Calcul der gewöhnlichen complexen Zahlen
unbedenklich den ausgedehntesten Gebrauch. Sie berufen sich mit Unrecht
auf die Autorität von Gauß, um die hier bekämpften Anschauungen zu
stützen: Wir besitzen von Gauß ein authentisches Zeugnis, das über seine

Stellung zu dieser Frage keinen Zweifel läßt. Warum soll es auch durchaus
nicht erlaubt sein, eine abkürzende Bereicherung zu gebrauchen, wenn
sie bequem und sachgemäß ist?" Und Study fügt als Fußnote hinzu:

„Ich freue mich, hier Herrn Dedekind zu begegnen, der sich in ähnlichem
Sinne über die Quaternionen ausgesprochen hat."

Die Bibliographie, die wir am Ende des Artikels zusammengestellt
haben, zeigt, daß sich trotz dieses Unbehagens sehr viele Mathematiker
mit diesem Thema beschäftigt haben.

I. Die Ideen von Study

Im Jahre 1890 veröffentlicht Study einen bemerkenswerten Übersichtsartikel

[47], der sehr viele Ideen enthält, die die damalige Entwicklung
befruchteten, aber auch einiges was nicht weiterverfolgt wurde und erst

heute im Wechselspiel zwischen algebraischen und geometrischen Methoden
betrachtet wird.

Zunächst wollen wir die Definition einer endlich-dimensionalen
assoziativen Algebra mit Eins über den komplexen Zahlen rekapitulieren,
wie sie in dieser Arbeit enthalten ist. Dabei wollen wir nicht die ungeheure
Vorarbeit von Grassmann [15], Pierce [31] und anderer Mathematiker
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vergessen, die die Grundlagen entwickelten. Während des ganzen
Abschnitts benutzen wir moderne Terminologie, und fügen in Klammern die

damals gebräuchlichen Termini ein.

Sei nun eL, e„ eine Basis (n Haupteinheiten) von C\ Die Elemente

von C" (extensive Größen) sind also die möglichen Linearkombinationen
mit komplexen Koeffizienten. Das Produkt wird durch folgende
Bedingungen definiert [47, p. 283f].

„1. Es muss das Produkt von irgend zweien der extensiven Größen mit
denselben Haupteinheiten aufgefaßt werden können. Die nothwen-
dige und hinreichende Bedingung hierfür ist, vermöge des distributiven
Gesetzes, das Bestehen von n2 Relationen der Form

n

etek £ yiks^s
s= 1

worin die Coefficienten yiks gewöhnliche reelle oder complexe Zahlen
vorstellen.

2. Es muss durch irgend drei der extensiven Größen das in der Formel

(2) (ab) c a (be)

ausgesprochene sogenannte associative Gesetz der Multiplikation
erfüllt sein.

Die nothwendige und ausreichende Bedingung hierfür ist das Bestehen
sämmtlicher Relationen der Form

(3) (etek) ej e; (ekej) 1,n)
d.h. das Bestehen des folgenden Systems von quadratischen
Identitäten für die unter (1) eingeführten Constanten yiks

n n

(4) Z yiksïsj,z ykjsYist
s= 1 5=1

3. Es muss unter den extensiven Größen eine Größe e° vorhanden sein,
die den beiden Gleichungen

(5) e°x x, xe° x

unabhängig von x genügt."

Wir sehen, daß sich die Bedingungen (1) bis (5) von der heutigen
Definition einer endlich-dimensionalen assoziativen Algebra mit Eins nicht
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unterscheiden. Früher wurden diese Systeme auch Systeme von complexen
Zahlen oder hypercomplexe Zahlensysteme genannt. Im folgenden
verstehen wir unter einer Algebra immer eine, die den Bedingungen (1) bis (5)

genügt. Study's weitere Ausführungen enthalten nun den folgenden Satz

über die Menge Alg„ aller Algebren einer festen Dimension n.

Satz: Alg„ ist eine offene Untervarietät einer affinen Varietät.

Sein Beweis: Die Bedingung (4) ist eine abgeschlossene Bedingung
auf der Menge der Strukturkonstanten (yiks ; i,k,s= 1, n). Die Bedingung

(5) läßt sich dadurch interpretieren, daß gewisse Determinanten in
den Strukturkonstanten nicht verschwinden.

Das zentrale Problem beschreibt Study nun wie folgt [47, p. 288 f].
„Als eine Fundamentalaufgabe in der Theorie der Systeme von

complexen Zahlen muss die bezeichnet werden: ,Alle Systeme von complexen
Zahlen mit n Haupteinheiten zu bestimmen/

Man kann die Aufgabe nicht etwa so stellen: ,Das allgemeinste System

von complexen Zahlen in n Haupteinheiten zu finden'; denn es ist nicht
von vornherein klar, und, wie die nähere Untersuchung zeigt, auch nicht
richtig, daß die Systeme von Constanten yiks, die den Bedingungen (1),

(4), (5) genügen, eine irreducibele Mannigfaltigkeit bilden: Sie zerfallen
vielmehr in verschiedene Gebiete, deren allgemeinste Repräsentanten
unter sich gleichwertig und als gleich allgemein zu betrachten sind, insofern
keines von ihnen aus einem anderen durch einen Grenzübergang erhalten
werden kann. Da wir uns aber über die Natur dieser Gebiete in völliger
Unkenntnis befinden, so bleibt uns nicht übrig, als bei kleinen Werten
der Zahl n zu versuchen, die vorhandenen Systeme unmittelbar zu
bestimmen."

Also wäre nach Study eine der Hauptaufgaben die irreduziblen Komponenten

von Alg„ zu bestimmen. Dieses Problem, welches damals nicht
gelöst wurde, ist von Gabriel [60] wieder aufgegriffen und mittels algebraisch

geometrischer Begriffsbildungen formuliert worden. Dabei betrachten

wir die folgende Situation. Auf Alg„ operiert die allgemeine lineare Gruppe
durch Basiswechsel. Die Bahnen dieser Operation sind natürlich die Iso-

morphieklassen. Es gibt zwei verschiedene Möglichkeiten für die irreduziblen

Komponenten: entweder sie enthalten eine offene Bahn, oder sie enthalten

eine offene Teilmenge, die Vereinigung von unendlich vielen Bahnen

gleicher Dimension ist. Die Algebren, die diese Bahnen erzeugen, sind die

„allgemeinsten Repräsentanten" im Sinne von Study.
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Die Beschreibung dieser Algebren, aus denen durch Entartung dann

alle anderen Algebren entstehen, gehört zu einem wichtigen Problem in der

Theorie der endlich-dimensionalen Algebren, welche neben den Anwendungen

in der Darstellungstheorie [60] und der algebraischen Geometrie

[57] Einblicke in die komplizierte Struktur aller Algebren ermöglicht.
Die Bedeutung der Arbeit Study's läßt sich aber auch an sehr konkreten

Beiträgen ablesen, die wir nun besprechen wollen. Er diskutiert die Begriffe
Isomorphic und Antiisomorphie (reciproke Algebra) und führt die folgende
interessante Invariante ein. Sei A eine «-dimensionale Algebra. Dann ist
die Ordnung ord (A) von A definiert als die größte Zahl i, für die es ein

xeA gibt, so daß 1 x°, x, xl~x linear unabhängig sind. Diese

Invariante ermöglicht eine grobe Klasseneinteilung der Algebren, welche
bei den späteren Klassifikationen (siehe II.) benutzt wurde. Study betrachtete
insbesondere die Klasse der Algebren, für die die Ordnung gleich der
Dimension ist und formulierte den folgenden Satz:

Satz : X { A e Alg„ | ord (A) n } ist eine irreduzible Varietät.

Beweis: Zunächst bemerken wir, daß alle Algebren in X kommutativ
sind und daß es eine Bijektion zwischen den Partitionen von n und den
Isomorphieklassen von Algebren in X gibt. Falls X (XL>...,Xr) eine

Partition von n ist, so definieren wir A fj C [x] / (xAr). Weiter sehen

wir, daß die Algebra zur Partition X (1, 1), also Cn mit
komponentenweiser Multiplikation nach Ax entartet. Also ist X irreduzibel.

(Man kann das Entartungsverhalten der Algebren in X mit Hilfe einer
geeigneten Anordnung der Partitionen beschreiben [64].)

In dieser Arbeit klassifiziert Study schließlich die Algebren der Dimension
vier und fügt die damals schon bekannten Tabellen in den kleineren Dimensionen

hinzu. Er vergißt dabei allerdings im Fall n 4 die folgende Algebra:

Ein zweiter ausführlicher Teil beschäftigt sich detailliert mit
Zusammenhängen zur Theorie der Transformationsgruppen, die von Lie
eingeführt wurde. Weitere Informationen dazu finden sich in [27].

i l



II. Allgemeine Klassifikationsmethoden

Die geometrischen Ideen von Study haben die spätere Entwicklung
nicht beeinflußt. Die folgende Zeit war durch ein Wechselspiel zwischen der

Entwicklung allgemeiner Struktursätze und Versuchen, die Algebren
kleiner Dimension tatsächlich zu klassifizieren, charakterisiert. Das Hauptziel

war jedenfalls die Beschreibung einer Normalform für endlichdimen-
sionale Algebren, aus der man dann durch explizite Berechnungen die

einzelnen Isomorphietypen ableiten kann. Solche Normalformen wurden
etwa in [21], [36] und [27] formuliert. Wir verzichten hier darauf, diese

Normalform zu skizzieren: Man würde sie heute unmittelbar aus mittlerweile

bekannten Struktursätzen, wie denen von Wedderburn-Malcev und
Wedderburn-Molien ableiten, die eben bei der Beschäftigung mit dem

Normalformproblem entwickelt wurden. Diese allgemeinen Ergebnisse
haben sich ja in den Lehrbüchern tradiert. Wir wollen nun einige Ergebnisse
erläutern, die sich im Zusammenhang mit der Klassifikation in kleinen
Dimensionen als nützlich erwiesen haben.

Schelfers Beiträge [36] zu der Theorie ermöglichten einige
Vereinfachungen im Aufstellen der Algebren einer festen Dimension. Zunächst
führte er den noch heute üblichen Zerlegbarkeitsbegriff ein. Da die Klassifikation

induktiv durchgeführt wurde, konnte man sich somit auf unzerlegbare

Algebren (also Algebren ohne nicht-triviale zentrale Idempotente)
beschränken. Er unterteilte die Algebren in Quaternionensysteme und
Nichtquaternionensysteme. Quaternionensysteme sind dadurch
gekennzeichnet, daß sich die Algebra aller 2 x 2-Matrizen über C als Unteralgebra
einbetten läßt. Und er bewies, daß es keine unzerlegbaren Quaternionensysteme

der Dimension fünf oder sechs geben kann.
Die Nichtquaternionensysteme mit mehreren orthogonalen Idem-

potenten bereiten naturgemäß keine großen Schwierigkeiten. Somit lag
also die Hauptschwierigkeit bei der Klassifikation der lokalen Algebren.
Es gab einige Ansätze [44], [45], um lokale Algebren allgemein zu klassifizieren.

Aber dies führt zu Resultaten, die keinen Hinweis enthalten, ob

die damit verbundenen Rechnungen in höheren Dimensionen überhaupt
durchführbar sind.

Bei der Klassifikation der lokalen Algebren wurde eine schon erwähnte
Idee von Study aufgegriffen. Man unterteilte diese Algebren nach ihrer
Ordnung und konnte für gewisse Extremwerte eine vollständige Klassifikation

durchführen. Wir wollen dies an einem Beispiel vorführen. Sei A
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eine lokale Algebra der Dimension n > 4) und ord (A) n — \ Es

gibt also x, y im Radikal von A, so daß x, x2,x"~2, y eine Basis bilden.

Man sieht leicht, daß wir annehmen können: xy 0, yx ax" 2, y2
bx"~2mit a,beC.Und die Voraussetzung erlaubt nun, die

Parameter a, b wie folgt zu wählen:

(a, b) A

(0,0) k[x, y~]/(xn~1,y2

(0,1) k[_x,y]l(x"~2 -y2,xy)
(1.0) k < x, y > I —yx

(1.1) k <x.v >

(wobei k < x, y > die freie Algebra in zwei Erzeugenden bezeichnet)
Diese Ergebnisse sind in [27], [36] enthalten. Eine weitere Möglichkeit zur
Untersuchung der lokalen Algebren liefert der Begriff des Geschlechts

einer lokalen Algebra. Dies ist die Zahlenfolge (dim Jl/Jl + 1)h i 0, 1, 2,

mit J rad A. Diese Unterteilung in grobe Klassen (nach Ordnung und
Geschlecht) kann man sehr gut in der Arbeit von Voghera [51] erkennen.

Wir wollen abschließend festhalten, daß in schwierigen Fällen (z.B.
ord (A) 3) umfangreiche Rechnungen erforderlich waren, um diese

grobe Einteilung so zu verfeinern, daß man die einzelnen Isomorphietypen
erhält. Da in höheren Dimensionen, nämlich für n > 4, die Klassifikation
nicht mehr endlich ist, ergab sich zusätzlich das Problem, einen minimalen
Parameterbereich für die unendlichen Serien anzugeben. Dieses Problem
wurde in einigen Fällen auch gelöst.

So enthält die Arbeit von Study [47] folgende Multiplikationstabelle
einer Serie vierdimensionaler lokaler Algebren. Dabei bezeichne e09 eu
e2, e3 eine Basis der Algebra.

e0 G e2

^0 ^0 G e2

G G 0

-e3 ce3 0

£3 £3 0 0 0

Der minimale Parameterbereich für c ist die projektive Gerade liber C.
Genauere Untersuchungen zur geometrischen Struktur solcher

Parameterbereiche wurden jedoch damals nicht angestellt.

L'Enseignement mathém., t. XXVI, fasc. 1-2. 7
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III. Spezielle Ergebnisse in kleinen Dimensionen

Das Hauptinteresse in dieser Periode lag ganz offensichtlich in der

expliziten Berechnung der Isomorphieklassen der Algebren einer festen

Dimension, nicht jedoch in einer allgemeinen Strukturtheorie. Dabei
wurde, wie im letzten Abschnitt erwähnt, immer eine der verschiedenen

typischen Normalformen zugrundegelegt, mittels Invarianten, wie Ordnung
und Geschlecht, eine grobe Klasseneinteilung vorgenommen und diese

genauer untersucht. Leider sind jedoch die meisten der Tabellen nicht
korrekt: entweder sie sind nicht vollständig oder sie enthalten auch
nichtassoziative Algebren, oder schließlich sind einige der aufgeführten Algebren
isomorph. Wir wollen auf einige der Fehler hinweisen, nicht aber die

Randbemerkung von Scheffers in [35] vergessen.
,,Die nachfolgenden der Systeme sind mit aller bei so umfangreicher

Rechnung erforderlichen Sorgfalt bestimmt und von den überzähligen
gesäubert worden. Sollten sich doch noch Fehler finden, was der Verfasser

nicht vermuthet, so bittet derselbe um Nachsicht." Die Klassifikation der

Algebren bis zur Dimension vier ist in [47] enthalten. Wir hatten schon

erwähnt, daß Study eine Algebra in der Dimension vier ausgelassen hatte,
die Tabellen der Algebren kleinerer Dimensionen sind dagegen vollständig.
Im Jahre 1890 bearbeiteten Scheffers [35] und unabhängig davon Rohr [33]

den Fall der fünf-dimensionalen Algebren. Wir wollen kurz auf die Scheffer-

sche Klassifikation der kommutativen Algebren eingehen. Es gibt genau
zwanzig Isomorphieklassen von kommutativen Algebren. Scheffers erhält 21

und tatsächlich sind die folgenden zwei lokalen Algebren isomorph. Sei

xl5 x4 eine Basis des Radikals. Dann findet sich als Algebra XIX folgende

Multiplikationstabelle

XIX *1 x2 *3 x,

xx 0 x4 0 0

x2 x4 *3 x4 0

*3 0 x4 0 0

x4 0 0 0 0

Wählen wir nun als neue Basis yx x2, y2 *3, y3 y4 *1
— x3, so geht die Algebra über in:
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ki k2 k 3 y4

kl k2 k 3 0 0

y2 k 3 0 0 0

y 3 0 0 0 0

y4-
0 0 0 0

Und dies ist die Algebra (XX) in Scheffers Tabelle.

Ansonsten ist diese Liste der kommutativen Algebren der Dimension
fünf vollständig.

Die Algebren der Dimension sechs wurden von Voghera, Hawkes und
Starkweather studiert. Die kommutativen Algebren in dieser Dimension
betrachtete Hazlett [24]. In [51] bespricht Voghera die Resultate von
Hawkes [21] und Starweather [45]. Die Arbeit von Voghera enthält wohl
die genaueste Tabelle der sechsdimensionalen Algebren zu dieser Zeit.
Wir möchten seine Resultate bezüglich der nichtlokalen unzerlegbaren
Algebren kommentieren. Zwei seiner Algebren (VI 134, VI 136 in seiner

Nummerierung) sind nicht assoziativ. Sei nämlich eu e6 eine Basis der
Algebra, so führt er die folgenden beiden Algebren auf.

VI 134 ei ^2 e3 c4 e5 <?6 VI136 *i e2 <?3 ?4 ^5 <?6

*i 0 0 0 0 0 *i ßi 0 0 0 ßl 0 0

^2 0 0 0 0 e2 0 0 0 *1 0 0 ^2

^3 0 <?1 0 <?3 0 0 e3 0 0 0 ^3 0 0

*1 <?2 e3 0 0 e4 *i <?2 0 e4 0 0

^5 0 0 0 0 e5 0 e5 0 0 e3 0 <?5 0

^6 0 0 0 0 0 ^6 0 0 0 0 0

aber (e3 ••e2) • ^6 ^ e3 (ß 2
• e e) in VI 134 und (e 2

* e ö) e3 ^ e2 iß 6 ' e3)
in VI 136.

Sonst ist seine Liste dieser Algebren aber korrekt. Man sollte dabei
beachten, daß er die Multiplikationstabellen von antiisomorphen Algebren
nur einmal aufschreibt, und angibt, wann eine Algebra antiisomorph zu
sich ist. Insgesamt erhält man 2 unendliche Serien und 64 diskrete Iso-
morphietypen von nicht lokalen 6-dimensionalen Algebren.

In höheren Dimensionen sind nur noch gewisse Klassen von Algebren
behandelt worden. So beschreibt etwa Hawkes in [22] die sieben-dimen-
sionalen nichtlokalen Algebren.
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Wir wollen mit einigen ziemlich flüchtigen Bemerkungen über die
weitere Entwicklung schließen. Die Theorie verzweigte sich in verschiedene

Richtungen. Die allgemeine Strukturtheorie der assoziativen Ringe, die
in [53] schon neue Ansätze gegenüber der bislang üblichen Betrachtungsweise

zeigt, wurde in den Büchern von Albert, Artin-Nesbitt-Thrall und
Jacobson zusammengefaßt, dabei verlagerte sich das Interesse im Falle
eines beliebigen Grundkörpers sehr bald auf die endlich-dimensionalen
Divisionsringe. Es gibt später nur wenige Artikel, die sich mit der expliziten
algebraischen oder geometrischen Klassifikation von Algebren beschäftigen.
Dies mag daran liegen, daß es nur eine geringe Hoffnung gibt, dieses Ziel
mit rein algebraischen Methoden zu erreichen. Wir wissen nur von zwei

Arbeiten, die die Klassifikation weiterverfolgten. Dies ist einmal ein Artikel
von Hausdorff [17] und dann insbesondere die Arbeiten von Scorza [41, 42].
Beide interessieren sich für Algebren über speziellen nicht algebraisch
abgeschlossenen Körpern und geben Klassifikationen bis zur Dimension
fünf. Schon damals scheinen allerdings die älteren Ergebnisse unbekannt

gewesen zu sein. So verweist Scorza lediglich auf die eingangs erwähnte
Arbeit [47] von Study.
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