Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 26 (1980)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: OPÉRATIONS SUR LES MODULES BILINÉAIRES

Autor: Revoy, Philippe

Kapitel: 4. -ANNEAUX ET ANNEAUX DE WITT-GROETHENDIECK

DOI: https://doi.org/10.5169/seals-51059

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

alternée, $S^p \varphi$ est alternée pour p impair (le permanent d'une matrice alternée d'ordre impair est 0). En utilisant la même technique que pour les puissances extérieures (le lemme 3.2.1 a un énoncé analogue en remplaçant Δ_n par le permanent des X_{ij}), on montre qu'un module quadratique (M, q, N) possède des puissances symétriques impaires $(S^{2p+1}M, S^{2p+1}q, S^{2p+1}N)$ avec $\varphi_{S^{2p+1}q} \cong S^{2p+1}\varphi_q$; pour puissances symétriques d'ordre pair, il est naturel de prendre les puissances correspondantes de φ_q .

Comme on a la formule $S^p(\varphi \perp \varphi') \simeq \underset{r=0}{\overset{p}{\perp}} S^r(\varphi) \otimes S^{p-r}\varphi', \varphi$ et φ' étant deux modules bilinéaires de même nature, on voit qu'on peut définir sur les anneaux $K_0^{SB}(R)$, $L_{Alt}(R)$, $L_Q(R)$, $\overline{K_0^{SB}(R)}$ des opérations σ de sorte que $x \mapsto \sum_{k=0}^{\infty} \sigma^k(x) t^k$ est un homomorphisme de groupes abéliens σ_t . La formule $1 = \lambda_{-t}(x) \sigma_t(x)$ est claire si R est un corps, ou même un anneau semi-local, car il suffit de la montrer pour un module de rang 1 ou 2; elle doit être vraie dans le cas général.

3.7. Problème

Bien que cela paraisse naturel, en particulier à cause de l'analogue en K-théorie topologique, je ne sais pas montrer que les anneaux introduits dans la 2^e partie sont des λ -anneaux (cf. 3.4). C'est, comme plus haut, vrai si R est semi-local car alors on est ramené à démontrer les formules universelles pour des modules de rang 1 ou 2 (si 2 n'est pas inversible). Il en est naturellement de même pour les modules quadratiques et alternés.

4. λ-ANNEAUX ET ANNEAUX DE WITT-GROETHENDIECK

Dans ce paragraphe, nous rassemblons quelques remarques et résultats concernant les anneaux rencontrés en 2 et 3 et leurs opérations λ . Du fait de 4.3, nous nous intéressons principalement aux anneaux de groupes abéliens et à certains de leurs quotients ([6]).

4.1. Le λ -anneau $\mathbb{Z}[G]$

Soit G un groupe abélien noté multiplicativement, $\mathbf{Z}[G]$ son anneau de groupe et $\mathbf{Q}[G]$ la \mathbf{Q} -algèbre du groupe G. La formule $\lambda_t(e_g) = 1 + t e_g \in \mathbf{Z}[G][[t]], g \in G$, fait de $\mathbf{Z}[G]$ un λ -anneau: il suffit en fait de le montrer pour $\mathbf{Q}[G]$ et, comme il s'agit d'une \mathbf{Q} -algèbre, il suffit d'après

[10], 7, de regarder les opérations d'Adams. Elles se calculent aisément sur les générateurs e_g , $g \in G$, et on trouve $\psi^k(e_g) = e_g k$, si bien que ψ^k est l'endomorphisme de $\mathbf{Q}[G]$ induit par l'endomorphisme de groupes abéliens $g \mapsto g^k$. On a donc bien les conditions: ψ^k est un homomorphisme d'anneaux, $\psi^1 = 1_{Q[G]}$ et ψ^k o $\psi^h = \psi^{kh}$ et on a vérifié que $\mathbf{Q}[G]$ et donc $\mathbf{Z}[G]$ est un λ -anneau.

Notons que $\mathbb{Z}[G]$, muni de sa graduation sur G est un λ -anneau gradué; si $R = \bigoplus_{g \in G} R_g$ est un λ -anneau (resp. pré- λ -anneau) G-gradué, R_1 est un λ -anneau (resp. pré- λ -anneau). Inversement, si R est un λ -anneau (resp. pré- λ -anneau), $R[G] = R \bigoplus_z \mathbb{Z}[G]$ est un λ -anneau (resp. pré- λ -anneau) G-gradué par la formule λ_t (re_g) = $\lambda_{tg}(r)$. Si par exemple G est d'exposant 2, $g \neq 1$ dans G et si λ_0 (resp. λ_1) est la partie paire (resp. impaire) de λ_t , on a λ_t ($r \otimes e_g$) = λ_0 (r) $\otimes 1 + \lambda_1$ (r) $\otimes e_g$.

On peut définir dans $\mathbf{Z}[G]$ des opérations γ^i comme pour tout λ -anneau; la filtration associée aux applications γ^i et à l'augmentation $\varepsilon: \mathbf{Z}[G] \to \mathbf{Z}$ est la filtration canonique des puissances de l'idéal d'augmentation de $\mathbf{Z}[G]$.

De même, on définit des opérations σ^j sur $\mathbb{Z}[G]$ par la formule

$$\sigma_{t}(e_{g}) = \frac{1}{\lambda_{-t}(e_{g})} = \frac{1}{1 - te_{g}} = \sum_{n=0}^{+\infty} t^{n} e_{gn} \in \mathbb{Z}[G][[t]].$$

4.2. Foncteur oubli

On sait que $K_0(R)$ est un λ -anneau. Le foncteur oubli induit un homomorphisme de $\overline{K_0^{SB}}(R)$ dans l'anneau $K_0(R)$ [Pic (R)]; ce dernier est un λ -anneau gradué sur Pic (R) et il est immédiat de vérifier que l'homomorphisme ci-dessus est un pré- λ -homomorphisme, compatible avec la graduation. Il en est de même pour les anneaux $L_{Alt}(R)$ et $L_Q(R)$ pour lesquels l'homomorphisme d'oubli est à valeurs dans $K_0(R)$ [$\mathbb{Z}/(2)$].

4.3. Cas d'un anneau semi-local

Soit R un anneau semi-local dans lequel 2 est inversible; alors $K_0^{SB}(R)$ est un quotient de l'anneau de groupe $\mathbf{Z}[G]$, $G = U(R)/U^2(R)$, car toute forme quadratique possède une base orthogonale. Comme deux bases orthogonales peuvent être reliées par une suite de bases orthogonales avec au plus deux changements de vecteurs à chaque fois, le noyau I de l'homomorphisme naturel $\mathbf{Z}[G] \to K_0^{SB}(R)$ est engendré par des éléments $e_a^- + e_b^- - e_c^- - e_d^-$, a, b, c, $d \in U(R)$ tels que les formes quadratiques

 $(x, y) \mapsto ax^2 + by^2$ et $(x, y) \mapsto cx^2 + dy^2$ soient isométriques. D'après 4.1 pour voir que $K_0^{SB}(R)$ est un λ -anneau, il suffit de vérifier que I est un λ -idéal, c'est-à-dire stable par les opérations λ ; mais cela est bien clair car si $\eta_1 = e_{\overline{a}} + e_{\overline{b}}$ et $\eta_2 = e_{\overline{c}} + e_{\overline{d}}$, $\lambda^i(\eta_1) \equiv \lambda^i(\eta_2)$ mod I pour tout entier i (on a égalité des discriminants et $\lambda^1(\eta_i) = \eta_i$). Des résultats analogues sont vrais pour $L_{Alt}(R)$ et $L_Q(R)$ et l'hypothèse 2 inversible peut être enlevée dans la majeure partie des cas ([6], Th. 1.16).

4.4. Quotients de $\mathbb{Z}[G]$

Comme on l'a vu en 4.3 et comme cela a été étudié systématiquement dans [6], certains quotients d'anneaux de groupes abéliens sont des anneaux de Witt-Groethendieck. Nous cherchons ici quelles conditions simples vérifient les idéaux I, contenus dans l'idéal d'augmentation, tels que $\mathbb{Z}[G]/I$ est un λ -anneau. Nous serons amenés à imposer des conditions sur G. On peut toujours supposer que l'application naturelle $G \to A_I = \mathbb{Z}[G]/I$ est injective car c'est un homomorphisme dans le groupe des éléments inversibles de A_I et si H désigne son noyau, A_I est un quotient de $\mathbb{Z}[G/H]$. L'idéal I ne contient alors que des éléments de la forme

(1)
$$\sum_{i=1}^{n} e_{g_i} - \sum_{i=1}^{n} e_{g'_i}, \quad n \geqslant 2;$$

dans ce cas, en calculant $\lambda^n \left(\sum_{i=1}^n e_{g_i}\right)$, on voit qu'on doit avoir $g_1 \dots g_n$ = $g_1' \dots g_n'$. De même en calculant λ^{n-1} et en utilisant l'égalité précédente, on trouve que $\sum_{i=1}^n \frac{e}{g_i^{-1}} \sum_{i=1}^n \frac{e}{g_i'}$ est encore dans I, c'est-à-dire que I doit être stable par l'involution canonique τ de $\mathbf{Z}[G]$ donnée par $\tau(e_g) = e_{g^{-1}}$.

Pour nous trouver le plus près possible du cas des modules bilinéaires, nous cherchons les λ -idéaux I engendrés par des éléments de la forme (1) avec n=2. On voit alors que la seule condition pour que \mathbf{Z} [G]/I soit un λ -anneau est que $g_1g_2=h_1h_2$; multipliant par e_{-1} , on voit que I est engendré par des éléments de la forme $\eta_c^d=e_1+e_d-e_c-e_{-1}$; on pose alors $N_d=\{c\mid c\in G \text{ et } \eta_c^d\in I\}$. La forme même de η_c^d montre que N_d est « symétrique » par rapport à d et contient 1; de façon analogue, on peut définir $H_c=\{d\mid d\in G \text{ et } \eta_c^d\in I\}$. La connaissance de I équivaut à celle des H_c ou des N_d . On a par exemple le

Lemme. Si G est un groupe d'exposant 2, N_d est un sous-groupe de G.

Si c_1 et c_2 sont dans N_d , $e_{c_1} + e_{c_1}^{-1}{}_d - e_{c_2} - e_{c_2}^{-1}{}_d \in I$ et comme $c_1 = c_1^{-1}$, $e_1 + e_d - e_{c_1c_2} - e_{c_1c_2d} \in I$, c'est-à-dire le résultat voulu.

La donnée de I revient à la donnée des sous-groupes N_d si G est un groupe d'exposant 2. Les sous-groupes N_d ne sont pas indépendants: outre le fait que $d \in N_d$, on a: si $c \in N_d \cap N_d$, alors $c \in N_{cdd'}$. Supposons par exemple $G = \mathbb{Z}/(2) = \{1, g\}$. On a $N_g = G$ et deux possibilités pour N_1 : soit G et on se trouve dans le cas d'un corps fini, soit le groupe réduit à l'élément neutre et on tombe sur le cas du corps des réels, l'idéal I étant réduit à $\{0\}$. Si $G = \mathbb{Z}/(2) \times \mathbb{Z}/(2)$, il y a quatre sous-groupes de G à se donner: pour trois d'entre eux, il y a deux possibilités suivant qu'ils sont égaux à G tout entier ou à $\{1, g\}$ où g est l'un des éléments non nuls de G. Pour N_1 , il y a cinq possibilités; si tous les N_g , $g \neq 1$, et N_1 sont égaux à G, cela veut dire que deux éléments d'augmentation 2 sont équivalents modulo I si et seulement si ils ont même discriminant. Les autres possibilités peuvent être décrites explicitement.

4.5. V-forme et λ -anneau

L'étude des λ -anneaux $\mathbb{Z}[G]/I$, G d'exposant 2, se rattache aux Vformes au sens de [5]. On suppose I engendré par des éléments de la forme $e_1 + e_d - (e_c + e_{cd})$ et donc I est caractérisé par la donnée des sous-groupes N_d . Considérons alors les applications biadditives symétriques φ de $G \times G$ dans les groupes abéliens telles que φ (a,b)=0 si et seulement si $a \in N_{ab}$. Cela définit un groupe abélien W quotient de $G \otimes_{\mathbb{Z}} G$ par le sous-groupe engendré par les éléments $a \otimes b$, tels que $a \in N_{ab}$ (notons que φ (a,b)=0 équivaut à φ (b,a)=0 car $ab \in N_{ab}$ et donc $b \in N_{ab}$ si $a \in N_{ab}$). Notons alors $\overline{\varphi}$ l'application canonique de $G \times G$ dans W. On a la proposition:

PROPOSITION. I est l'idéal engendré par les éléments de la forme $(e_{\alpha} + e_{\beta}) - (e_{\gamma} + e_{\delta})$ tels que $\overline{\varphi}(\alpha, \beta) = \overline{\varphi}(\gamma, \delta)$ et $\alpha\beta = \gamma\delta$.

Si $e_{\alpha} + e_{\beta} - e_{\gamma} - e_{\delta} \in I$, on a $\alpha\beta = \gamma\delta$ et donc $e_1 + e_{\alpha\beta} - e_{\alpha\gamma} - e_{\alpha\delta} \in I$, soit $\overline{\varphi}(\alpha\gamma, \alpha\delta) = 0$. Cela donne $\overline{\varphi}(\alpha, \alpha\gamma\delta) = \overline{\varphi}(\gamma, \delta)$ et comme $\alpha\gamma\delta = \beta$, on obtient la partie directe. Inversement si $\alpha\beta = \gamma\delta$ et $\overline{\varphi}(\alpha, \beta) = \overline{\varphi}(\gamma, \delta)$, le même calcul montre que $\overline{\varphi}(\alpha\gamma, \beta\gamma) = 0$, soit $\alpha\gamma \in N_{\alpha\beta}$. Cela donne $e_1 + e_{\alpha\beta} - e_{\alpha\gamma} - e_{\beta\gamma} \in I$ soit $(e_{\alpha} + e_{\beta}) - (e_{\gamma} + e_{\delta}) \in I$, d'où la proposition.

Dans les hypothèses de 4.5, soit J l'idéal d'augmentation de \mathbf{Z} [G]/I; il est engendré par les classes des éléments $\bar{a}=e_1-e_a, a\in G-\{1\}$. L'application naturelle de G dans J qui à a associe \bar{a} induit un isomorphisme de G sur le groupe $J_{/J^2}$ car $\overline{ab}-\bar{a}-\bar{b}=e_1-e_{ab}-(e_1-e_a)-(e_1-e_b)$

= $e_a + e_b - e_{ab} - e_1 = -(e_a - e_1)(e_b - e_1)$. On a, de même, une application naturelle ψ de $G \times G$ dans J^2 qui au couple (a,b) associe le produit \bar{a} . \bar{b} dans $A_I = \mathbf{Z}[G]/I$; il est clair que cette application est symétrique. De plus $\psi(a,b) + \psi(a,c) - \psi(a,bc)$ est l'image dans A_I de $(e_1 - e_a)(e_1 - e_b)(e_1 - e_c)$, c'est-à-dire que ψ induit une application biadditive symétrique de $G \times G$ dans $J^2_{/J^3}$ qui est surjective car les éléments \bar{a} . \bar{b} engendrent J^2 . On voit immédiatement que $\psi(a,b) = 0$ si $a \in N_{ab}$, donc ψ induit une surjection de W sur le groupe $J^2_{/J^3}$. Une démonstration directement inspirée de [8], III, § 5, permet de montrer que cette surjection est un isomorphisme.

APPENDICE: DISCRIMINANT ET DÉTERMINANT

Soit $X=\operatorname{Spec}(R)$ l'ensemble des idéaux premiers de R muni de la topologie de Zariski et $H_0(R)$ l'anneau des fonctions continues de $\operatorname{Spec}(R)$ dans Z muni de la topologie discrète. Comme X est quasi-compact, un élément f de $H_0(R)$ est la donnée d'une partition finie de X en parties ouvertes et fermées X_i et pour chaque X_i d'un entier naturel n_i qui est la valeur de f sur X_i . Si $P \in \mathcal{P}(R)$, pour chaque idéal premier $\underline{P}, P_{\underline{P}}$ est un $A_{\underline{P}}$ -module libre de rang $r_p(\underline{p})$; la fonction r_p définie sur X par $\underline{P} \mapsto r_p(\underline{p})$ est continue (i.e. localement constante). C'est donc un élément de $H_0(R)$ qu'on note r_p . On a alors un homomorphisme d'anneaux $r: K_0(R) \to H_0(R)$ car $r_{p \oplus p'} = r_p + r_{p'}$, et $r_{p \otimes Q} = r_p r_Q$, dont le noyau mesure la non-liberté (stablement) des R-modules projectifs de type fini ([2]). Cet homomorphisme est surjectif car si $f \in H_0(R)$ est positive et $f^{-1}(n_i) = X_i = \operatorname{Spec}(R e_i), P = \bigoplus (R e_i)^{n_i}$ est un R-module projectif de type fini de rang $r_p = f$.

Soit de nouveau $f \in H_0(R)$ une fonction positive; nous pouvons définir sur $K_0(R)$, $K_0^{SB}(R)$, ... des opérations λ^f et σ^f . En effet, soit n_i la valeur prise par f sur $X_i = \operatorname{Spec} R e_i$: tout module projectif P est somme directe des $P e_i$ et on pose $\Lambda^f P = \bigoplus_{i \in I} \Lambda^{n_i}(P e_i)$ et de même pour SB ou pour des modules bilinéaires ou quadratiques. En particulier, on appelle déterminant de P, le R-module $\Lambda^{rp}P$ qui est projectif de type fini et de rang 1 et on le note dét P([2]). On voit immédiatement que dét P([2]) = P([2]) = P([2]) dét P([2]) = P([2]) = P([2]) of et P([2]) = P([2]) det P([2]) = P([2]) et P([2]) = P([2]) det P([2]) = P([2]) det P([2]) = P([2]) et P([2]) = P([2]) et P([2]) = P([2]) et P([2]) = P([2]) det P([2]) = P([2]) et P([2]) et