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alternée, SP¢@ est alternée pour p impair (le permanent d’une matrice
alternée d’ordre impair est 0). En utilisant la méme technique que pour
les puissances extérieures (le lemme 3.2.1 a un énoncé analogue en rem-
plagant A, par le permanent des X;;), on montre qu’un module quadratique
(M, q, N) posséde des puissances symétriques impaires (S2?* 1M, §27*1q,
S2PT1N) avec Ps2p+1, = S?7*1g,; pour puissances symétriques d’ordre

pair, il est naturel de prendre les puissances correspondantes de ¢,.

p
Comme on a la formule S? (pLgp’) ~ L S"(p)® S? "¢, ¢ et ¢’

r=0
étant deux modules bilinéaires de méme nature, on voit qu’on peut définir

sur les anneaux Ky° (R), La, (R), Ly (R), K3® (R) des opérations ¢ de

gt o0

sorte que x > » " (x) ¢* est un homomorphisme de groupes abéliens o,.
k=0

La formule 1 = A_,(x) g, (x) est claire si R est un corps, ou méme un
anneau semi-local, car il suffit de la montrer pour un module de rang 1
ou 2; elle doit €tre vraie dans le cas général.

3.7. Probleme

Bien que cela paraisse naturel, en particulier 2 cause de ’analogue en
K-théorie topologique, je ne sais pas montrer que les anneaux introduits
dans la 2° partie sont des A-anneaux (cf. 3.4). Cest, comme plus haut,
vrai si R est semi-local car alors on est ramené a démontrer les formules
universelles pour des modules de rang 1 ou 2 (si 2 n’est pas inversible). Il
en est naturellement de méme pour les modules quadratiques et alternés.

4. A-ANNEAUX ET ANNEAUX DE WITT-GROETHENDIECK

Dans ce paragraphe, nous rassemblons quelques remarques et résultats
concernant les anneaux rencontrés en 2 et 3 et leurs opérations 4. Du fait |
de 4.3, nous nous intéressons principalement aux anneaux de groupes |
abéliens et a certains de leurs quotients ([6]). |

4.1. Le A-anneau Z [G]

Soit G un groupe abélien noté multiplicativement, Z [G] son anneau
de groupe et Q [G] la Q-algébre du groupe G. La formule 4,(e)) = 1
+ te,e Z[G][[t]l, g €G, fait de Z [G] un l-anncau: il suffit en fait de |
le montrer pour Q [G] et, comme il s’agit d’'une Q-algebre, il suffit d’apres §
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[10], 7, de regarder les opérations d’Adams. Elles se calculent aisement
sur les générateurs ¢, g € G, et on trouve Yr (e,) = ezk, si bien que Wk
est I’endomorphisme de Q [G] induit par I’endomorphisme de groupes
abéliens g — g*. On a donc bien les conditions: ¥/* est un homomorphisme
d’anneaux, Y' = lggy et Y* o y* = Y et on a vérifié que Q [G] et
donc Z [G] est un A-anneau.

Notons que Z [G], muni de sa graduation sur G est un A-anneau gradué;

si R = @ R, est un A-anneau (resp. pré-i-anneau) G-gradué, R,
geG
est un A-anneau (resp. pré-A-anneau). Inversement, si R est un A-anneau

(resp. pré-i-anneau), R[G] = R @,Z [G] est un l-anneau (resp. pré-
A-anneau) G-gradué par la formule A, (re,) = A,, (r). Si par exemple G
est d’exposant 2, g # 1 dans G et si A, (resp. 1,) est la partie paire (resp.
impaire) de A, ona A, (r®e) = Ao (r) @1 + 4, (r) ® e,.

On peut définir dans Z [G] des opérations 9’ comme pour tout A-anneau;
la filtration associée aux applications y* et a ’augmentation ¢ : Z [G] - Z
est la filtration canonique des puissances de I'idéal d’augmentation de
Z [G].

De méme, on définit des opérations ¢ sur Z [G] par la formule

Lo L Ly e ezfa[].

/{—t (eg) 1 - teg n=0

G, (eg) =

4.2. Foncteur oubli

On sait que K (R) est un 1-anneau. Le foncteur oubli induit un homo-
morphisme de g35B(R) dans P’anneau K, (R) [Pic (R)]; ce dernier est

un A-anneau gradué sur Pic (R) et il est immédiat de vérifier que ’homo-
morphisme ci-dessus est un pré-A-homomorphisme, compatible avec la
graduation. Il en est de méme pour les anneaux L,, (R) et Ly (R) pour
lesquels ’homomorphisme d’oubli est & valeurs dans K, (R) [Z/(2)].

4.3. Cas d’un anneau semi-local

Soit R un anneau semi-local dans lequel 2 est inversible; alors K 5Z (R)
est un quotient de ’anneau de groupe Z [G], G = U(R)/U?(R), car
toute forme quadratique posséde une base orthogonale. Comme deux
bases orthogonales peuvent é&tre reliées par une suite de bases orthogonales
avec au plus deux changements de vecteurs & chaque fois, le noyau [ de
’homomorphisme naturel Z [G] » K38 (R) est engendré par des éléments
e;t ey —e; — ez, a, b, ¢, de U(R) tels que les formes quadratiques




(x,y) = ax® + by? et (x, y) = cx? + dy? soient isométriques. D’apreés 4.1
pour voir que K3® (R) est un A-anneau, il suffit de vérifier que 7 est un
A-idéal, c’est-a-dire stable par les opérations A; mais cela est bien clair car
sing=egz + ey etn, = ez + ez, A'(n,) = A'(y,) mod I pour tout entier i
(on a égalité des discriminants et A' () = #,). Des résultats analogues
sont vrais pour L,y (R) et Ly (R) et ’hypothése 2 inversible peut étre
enlevée dans la majeure partie des cas ([6], Th. 1.16).

4.4. Quotients de Z [G]

Comme on I’a vu en 4.3 et comme cela a été étudié systématiquement
dans [6], certains quotients d’anneaux de groupes abéliens sont des anneaux
de Witt-Groethendieck. Nous cherchons ici quelles conditions simples
vérifient les idéaux 7, contenus dans I'idéal d’augmentation, tels que Z [G]/I
est un A-anneau. Nous serons amenés a imposer des conditions sur G.
On peut toujours supposer que ’application naturelle G — A; = Z [G]/I
est injective car c’est un homomorphisme dans le groupe des éléments
inversibles de 4, et si H désigne son noyau, A; est un quotient de Z [G/H ].
L’idéal I ne contient alors que des éléments de la forme

n n
(1) Y ey, — Y, eg., n>=>2;
i=1 i=1
dans ce cas, en calculant A" ( > egi>, on voit qu’on doit avoir g, . ... . g,
i=1
= g1 ..... g De méme en calculant A"~ ! et en utilisant I’égalité précédente,
n h

on trouve que » € _, ) e, , estencore dans J, C’est-a-dire que
i=1 &8; i=1 &i

doit étre stable par I'involution canonique t de Z [G] donnée par 7 (e,)

Pour nous trouver le plus prés possible du cas des modules bilinéaires,
nous cherchons les A-idéaux I engendrés par des éléments de la forme (1)
avec n = 2. On voit alors que la seule condition pour que Z [G]/] soit

un A-anneau est que g.g, = h;h,; multipliant par e_;, on voit que
£1
I est engendré par des éléments de la forme 4% = e, + e, — e, — e _; ; on
c d

pose alors N, = { ¢ ] ceGetyle I}. La forme méme de n® montre que
N, est « symétrique » par rapport a d et contient 1; de fagon analogue, on
peut définir H, = {d | deG et nlel }. La connaissance de I équivaut
a celle des H, ou des N, On a par exemple le

|
!
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LEMME. Si G est un groupe d’exposant 2, N, est un sous-groupe de G.

. -1 -1
Si ¢, et ¢, sont dans N, e, + e a— €, — €, €l et comme

¢y = c'll, e; ey —ecey ™ €opega€l, c’est-a-dire le résultat voulu.

La donnée de I revient & la donnée des sous-groupes N, si G est un
groupe d’exposant 2. Les sous-groupes N, ne sont pas indépendants:
outre le fait que de N,, on a: si ce N; n Ny, alors ¢ € N4, . Supposons
par exemple G = Z/(2) = {1,g9}. On a N, = G et deux possibilites
pour N,: soit G et on se trouve dans le cas d’un corps fini, soit le groupe
réduit a I’élément neutre et on tombe sur le cas du corps des réels, I'idéal 7
étant réduit & {0}. Si G = Z/(2) x Z/(2), il y a quatre sous-groupes de G
3 se donner: pour trois d’entre eux, il y a deux possibilités suivant qu’ils
sont égaux a G tout entier ou a { 1, g } ou g est I'un des éléments non nuls
de G. Pour Ny, il y a cinqg possibilités; si tous les N, g # 1, et N, sont
égaux a G, cela veut dire que deux éléments d’augmentation 2 sont équi-
valents modulo 7 si et seulement si ils ont méme discriminant. Les autres
possibilités peuvent étre décrites explicitement.

4.5. V-forme et A-anneau

L’é¢tude des A-anneaux Z [G]/I, G d’exposant 2, se rattache aux V-
formes au sens de [5]. On suppose I engendré par des éléments de la forme
e; + e, — (e, +e.,) et donc ] est caractérisé par la donnée des sous-groupes
N,. Considérons alors les applications biadditives symétriques ¢ de G X G
dans les groupes abéliens telles que ¢ (a, b)) = 0 si et seulement si a € N,.
Cela définit un groupe abélien W quotient de G ® ; G par le sous-groupe
engendré par les éléments a ® b, tels que a € N, (notons que ¢ (a, b) = 0
équivaut a ¢ (b,a) = O car abe N, et donc be N, si ae N,). Notons
alors ¢ I'application canonique de G X G dans W. On a la proposition:

PROPOSITION. [ est [’idéal engendré par les éléments de la forme (e,+ e 5)
— (e, +e;) tels que @ (o, f) = @ (p,0) et aff = .

Sie, + ey —e,—es;el,onauf =yoetdonce, + Cap ~ Cuy — g5 € 1,
soit @ (ap, ®0) = 0. Cela donne & («, apd) = @ (7, ) et comme apd = B,
on obtient la partie directe. Inversement si aff = 5 et @ (o, ) = @ (7, J),
le méme calcul montre que @ (ay, fy) = 0, soit ay € N,g. Cela donne
1 T e — €y — ep, €1s0it (¢, e5) — (e,+e5) € I, d’ou la proposition.

Dans les hypothéses de 4.5, soit J Iidéal d’augmentation de Z [G]/I;
il est engendré par les classes des éléments @ = e; — e,, ae G — {1},
L’application naturelle de G dans J qui & a associe @ induit un isomorphisme
de G sur le groupe J; 2 cargb — @ — b = e; — e, — (e;—¢€,) — (e;—ey)
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=e, te —ey —e = —(e,—e;) (e,—e;). On a, de méme, une appli-
cation naturelle  de G x G dans J? qui au couple (a, b) associe le produit
a.b dans A; = Z [G]/I; il est clair que cette application est symétrique.
De plus ¥ (a,b) + ¥ (a,c) — ¥ (a, bc) est 'image dans A; de (e;—e,)
(e;—e,) (e;—e.), cest-a-dire que Y induit une application biadditive
symétrique de G x G dans J?, ;3 qui est surjective car les €léments a . b
engendrent J2. On voit immédiatement que ¥ (¢, b) = 0 si ae N,,, donc
Y induit une surjection de W sur le groupe J?, ;3- Une démonstration
directement inspirée de [8], III, § 5, permet de montrer que cette surjection
est un isomorphisme.

APPENDICE: DISCRIMINANT ET DETERMINANT

Soit X = Spec (R) 'ensemble des idéaux premiers de R muni de la
topologie de Zariski et H, (R) I’anneau des fonctions continues de Spec (R)
dans Z muni de la topologie discréte. Comme X est quasi-compact, un
élément f de H, (R) est la donnée d’une partition finie de X en parties
ouvertes et fermées X; et pour chaque X; d’un entier naturel »; qui est la
valeur de f sur X;. Si Pe 2 (R), pour chaque idéal premier p, P, est un

A,-module libre de rang r, (p); la fonction r, définie sur X par p = r,(p)

est continue (i.e. localement constante). C’est donc un élément de H, (R)
qu’on note r,. On a alors un homomorphisme d’anneaux r : K, (R) — H, (R)
Car g,y = Iy T Fp, €t Fogo = 1) 7o, dont le noyau mesure la non-
liberté (stablement) des R-modules projectifs de type fini ([2]). Cet
homomorphisme est surjectif car si fe H,(R) est positive et f~*
(n,) = X;,= Spec (Re), P= @ (Re)"" est un R-module projectif
de type fini de rangr, = f.

Soit de nouveau fe H, (R) une fonction positive; nous pouvons définir
sur K, (R), K32 (R), ... des opérations A/ et ¢/. En effet, soit n; la valeur

prise par fsur X; = Spec R e;: tout module projectif P est somme directe

des Pe; et on pose A/P = @ A" (Pe,) et de méme pour SB ou pour |

iel
des modules bilinéaires ou quadratiques. En particulier, on appelle déter-
minant de P, le R-module A™P qui est projectif de type fini et de rang 1
et on le note dét P ([2]). On voit immédiatement que dét (P@ Q) = dét P
® dét Q. Les opérations A/ et S/ et ’homomorphisme déterminant
s’étendent a K, (R), tout entier ainsi qu’aux anneaux considérés dans la
partie 3 (si N € Pic (R), dét N = N et inverse de N est N*; ainsi dét (—[P])
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