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alternée, Spcp est alternée pour p impair (le permanent d'une matrice
alternée d'ordre impair est 0). En utilisant la même technique que pour
les puissances extérieures (le lemme 3.2.1 a un énoncé analogue en

remplaçant A n par le permanent des Xtj), on montre qu'un module quadratique
(M, q, N) possède des puissances symétriques impaires (S2p+1M, S2p+1q,

S2p+1N) avec <Ps2p+iq S2p+ 1<Pq\ pour puissances symétriques d'ordre

pair, il est naturel de prendre les puissances correspondantes de cpq.
p

Comme on a la formule Sp((p±cp') ~ _L Sr (cp) ® Sp~rcp\ cp et cp'
r=o

étant deux modules bilinéaires de même nature, on voit qu'on peut définir

sur les anneaux KBB (R), LAlt (R), LQ (R), KBB (R) des opérations cr de
<yt co

sorte que x ^ <jk (x) tk est un homomorphisme de groupes abéliens <rt.
k 0

La formule 1 — À_t(x) <jt(x) est claire si R est un corps, ou même un
anneau semi-local, car il suffit de la montrer pour un module de rang 1

ou 2; elle doit être vraie dans le cas général.

3.7. Problème

Bien que cela paraisse naturel, en particulier à cause de l'analogue en

TCthéorie topologique, je ne sais pas montrer que les anneaux introduits
dans la 2e partie sont des 2-anneaux (cf. 3.4). C'est, comme plus haut,
vrai si R est semi-local car alors on est ramené à démontrer les formules
universelles pour des modules de rang 1 ou 2 (si 2 n'est pas inversible). Il
en est naturellement de même pour les modules quadratiques et alternés.

4. 2-anneaux et anneaux de Witt-Groethendieck

Dans ce paragraphe, nous rassemblons quelques remarques et résultats

concernant les anneaux rencontrés en 2 et 3 et leurs opérations X. Du fait
de 4.3, nous nous intéressons principalement aux anneaux de groupes
abéliens et à certains de leurs quotients ([6]).

4.1. Le X-anneau Z [G]

Soit G un groupe abélien noté multiplicativement, Z [G] son anneau
de groupe et Q [G] la Q-algèbre du groupe G. La formule Xt (eg) 1

+ t eg e Z [G] [[*]], g e G, fait de Z [G] un 2-anneau: il suffit en fait de

le montrer pour Q [G] et, comme il s'agit d'une Q-algèbre, il suffit d'après
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[10], 7, de regarder les opérations d'Adams. Elles se calculent aisément

sur les générateurs eg9 g e G, et on trouve ijjk (eg) egk, si bien que \//k

est l'endomorphisme de Q [G] induit par l'endomorphisme de groupes
abéliens g gk. On a donc bien les conditions : \J/k est un homomorphisme

d'anneaux, i//1 1öj;g] o \j/h \l/kh et on a vérifié que Q [G] et

donc Z [G] est un A-anneau.

Notons que Z [G], muni de sa graduation sur G est un A-anneau gradué;
si R © Ra est un A-anneau (resp. pré-A-anneau) G-gradué, Rt

geG

est un A-anneau (resp. pré-A-anneau). Inversement, si R est un A-anneau

(resp. pré-A-anneau), R[G] R ®zZ [G] est un A-anneau (resp. pré-
A-anneau) G-gradué par la formule Af (reg) Xtg (r). Si par exemple G

est d'exposant 2, g ^ 1 dans G et si A0 (resp. Ax) est la partie paire (resp.

impaire) de Af, on a Xt(r ® eg) A0 (r) ® 1 + A1 (r) ® eg.

On peut définir dans Z [G] des opérations y1 comme pour tout A-anneau;
la filtration associée aux applications y1 et à l'augmentation s : Z [G] Z
est la filtration canonique des puissances de l'idéal d'augmentation de

Z [G].
De même, on définit des opérations oj sur Z [G] par la formule

T Z e Z [G] [[r]]~ leg n 0

4.2. Foncteur oubli

On sait que K0 (R) est un A-anneau. Le foncteur oubli induit un
homomorphisme de k[b(R) dans l'anneau K0 (R) [Pic (R)]; ce dernier est

un A-anneau gradué sur Pic (R) et il est immédiat de vérifier que l'homo-
morphisme ci-dessus est un pré-A-homomorphisme, compatible avec la
graduation. Il en est de même pour les anneaux LAlt (R) et LQ (R) pour
lesquels l'homomorphisme d'oubli est à valeurs dans K0 (R) [Z/(2)].

4.3. Cas d'un anneau semi-local

Soit R un anneau semi-local dans lequel 2 est inversible; alors KS0B (R)
est un quotient de l'anneau de groupe Z [G], G U(R)/U2(R), car
toute forme quadratique possède une base orthogonale. Comme deux
bases orthogonales peuvent être reliées par une suite de bases orthogonales
avec au plus deux changements de vecteurs à chaque fois, le noyau I de
l'homomorphisme naturel Z [G] -> KS0B (R) est engendré par des éléments
ea + eF ~ eA ~ ed> a> b9 c, de U(R) tels que les formes quadratiques
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(x, y) >-> ax2 + 2 et (x, y) i-> cx2 + Jy2 soient isométriques. D'après 4.1

pour voir que KqB (R) est un A-anneau, il suffit de vérifier que 7 est un
A-idéal, c'est-à-dire stable par les opérations A; mais cela est bien clair car
si rj 1 e~ + et r\2 e~ + ej, A1 (rçj A1 (q2) mod Ipour tout entier i
(on a égalité des discriminants et A1 (rjt) rjt). Des résultats analogues
sont vrais pour LAlt (R) et LQ (R) et l'hypothèse 2 inversible peut être
enlevée dans la majeure partie des cas ([6], Th. 1.16).

4.4. Quotients de Z [G]

Comme on l'a vu en 4.3 et comme cela a été étudié systématiquement
dans [6], certains quotients d'anneaux de groupes abéliens sont des anneaux
de Witt-Groethendieck. Nous cherchons ici quelles conditions simples
vérifient les idéaux 7, contenus dans l'idéal d'augmentation, tels que Z [G]/I
est un A-anneau. Nous serons amenés à imposer des conditions sur G.

On peut toujours supposer que l'application naturelle G -+ Ax Z [G]//
est injective car c'est un homomorphisme dans le groupe des éléments
inversibles de Aj et si 77 désigne son noyau, AT est un quotient de Z [G///].
L'idéal I ne contient alors que des éléments de la forme

n n

Z esi~Zes'i >

i—1 i=1

dans ce cas, en calculant An ^ eg}j, on voit qu'on doit avoir g1 gn

g[ g 'n. De même en calculant An~1 et en utilisant l'égalité précédente,
n n

on trouve que £ e
_1 e est encore dans 7, c'est-à-dire que 7

i 1 Si i=l Si
doit être stable par l'involution canonique t de Z [G] donnée par t (eg)

V1'
Pour nous trouver le plus près possible du cas des modules bilinéaires,

nous cherchons les A-idéaux 7 engendrés par des éléments de la forme (1)

avec n 2. On voit alors que la seule condition pour que Z [G]/7 soit

un A-anneau est que g±g2 hlh2; multipliant par e_u on voit que
ë\

I est engendré par des éléments de la forme rfc ex + ed — ec — e _! ; on
c d

pose alors Nd { c | c e G et rjdc e 7}. La forme même de rfc montre que
Nd est « symétrique » par rapport à d et contient 1 ; de façon analogue, on

peut définir Hc — {d\deG et rjdcel}. La connaissance de 7 équivaut
à celle des Hc ou des Nd. On a par exemple le
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Lemme. Si G est un groupe d'exposant 2, Nd est un sous-groupe de G.

Si c1 et c2 sont dans Nd, en + e^d ~ eC2 ~ eC2ld^I et comme

c~\ e± + - ecic2 - ecic2del, c'est-à-dire le résultat voulu.

La donnée de I revient à la donnée des sous-groupes Nd si G est un

groupe d'exposant 2. Les sous-groupes Nd ne sont pas indépendants:

outre le fait que d e Nd, on a: si c e Nd n Nd, alors c e Ncàd>. Supposons

par exemple G Z/(2) { l,g}. On a Ng G et deux possibilités

pour Nx : soit G et on se trouve dans le cas d'un corps fini, soit le groupe
réduit à l'élément neutre et on tombe sur le cas du corps des réels, l'idéal /
étant réduit à { 0 }. Si G Z/(2) x Z/(2), il y a quatre sous-groupes de G

à se donner: pour trois d'entre eux, il y a deux possibilités suivant qu'ils
sont égaux à G tout entier ou à { 1, g } où g est l'un des éléments non nuls
de G. Pour Nu il y a cinq possibilités; si tous les Ng, g # 1, et N1 sont

égaux à G, cela veut dire que deux éléments d'augmentation 2 sont
équivalents modulo / si et seulement si ils ont même discriminant. Les autres

possibilités peuvent être décrites explicitement.

4.5. V-forme et A-anneau

L'étude des A-anneaux Z [G]//, G d'exposant 2, se rattache aux V-

formes au sens de [5]. On suppose I engendré par des éléments de la forme
e1 + ed — (ec + ecd) et donc I est caractérisé par la donnée des sous-groupes
Nd. Considérons alors les applications biadditives symétriques cp de G x G

dans les groupes abéliens telles que cp («a, b) 0 si et seulement si a e Nab.

Cela définit un groupe abélien W quotient de G ® z G par le sous-groupe
engendré par les éléments a ® b, tels que a e Nab (notons que cp (,a, b) 0

équivaut ä cp (b, a) 0 car ab e Nab et donc b e Nab si ae Nab). Notons
alors cp l'application canonique de G x G dans W. On a la proposition:

Proposition. / est l'idéal engendré par les éléments de la forme (ea + eß)

- (ey + eô) tels que cp (a, ß) cp (y, S) et aß yd.

si ea + eß - ey- eôe /, on a aß yd et donc e± + eaß - eay - eaô e /,
soit <p (ay, ad) 0. Cela donne cp (a, ayS) cp (y, d) et comme ayd ß,
on obtient la partie directe. Inversement si aß yd et <p (a, ß) cp (y, d),
le même calcul montre que cp (ay, ßy) 0, soit ay e Naß. Cela donne
ei + eaß ~ eay ~~ eßytl soit (ca + eß) — (ey + eô) e /, d'où la proposition.

Dans les hypothèses de 4.5, soit J l'idéal d'augmentation de Z [G]//;
il est engendré par les classes des éléments ä e1 - ea, a e G - { l }.
L'application naturelle de G dans / qui à a associe ä induit un isomorphisme
de G sur le groupe J/j2 car äb - ä - E et - eab - (e^ef) - {e^eß)
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ea + eb — eab — e1 — (ea — et) (eb — <0. On a, de même, une
application naturelle \jj de G x G dans J2 qui au couple (a, b) associe le produit
ä b dans Z [G]//; il est clair que cette application est symétrique.
De plus \j/(a,b) + ijj (a, c) - \j/(a, bc) est l'image dans AT de (e1—ea)

(ei ~eb) (ei~ec)> c'est-à-dire que \j/ induit une application biadditive
symétrique de G x G dans J2 /ß qui est surjective car les éléments a b

engendrent J2. On voit immédiatement que \j/ (a, b) 0 si ae Nab, donc
ij/ induit une surjection de W sur le groupe J2fj3. Une démonstration
directement inspirée de [8], III, § 5, permet de montrer que cette surjection
est un isomorphisme.

Appendice: Discriminant et déterminant

Soit X Spec (R) l'ensemble des idéaux premiers de R muni de la

topologie de Zariski et H0 (R) l'anneau des fonctions continues de Spec (R)
dans Z muni de la topologie discrète. Comme X est quasi-compact, un
élément / de H0 (R) est la donnée d'une partition finie de X en parties
ouvertes et fermées Xt et pour chaque Xt d'un entier naturel nt qui est la
valeur de / sur Xt. Si P g 0* (R), pour chaque idéal premier p, Pp est un

Zp-module libre de rang rp (/?); la fonction rp définie sur X par p rp(p)
est continue (i.e. localement constante). C'est donc un élément de H0 (R)
qu'on note rp. On a alors un homomorphisme d'anneaux r : K0 (R) H0 (R)
car rp@p. rp + rpf, et rp0Q rp rQ, dont le noyau mesure la non-
liberté (stablement) des É?-modules projectifs de type fini ([2]). Cet

homomorphisme est surjectif car si fe H0 (R) est positive et / ~1

(nt) Xt= Spec (R et), P © (R e^ni est un 7?-module projectif
de type fini de rang rp /. leI

Soit de nouveau/e H0 (R) une fonction positive; nous pouvons définir
sur K0 (R), KqB (R), des opérations Xf et af. En effet, soit nt la valeur

prise par / sur Xt Spec R et : tout module projectif P est somme directe

des P et et on pose AfP © An{ (P et) et de même pour SB ou pour
iel

des modules bilinéaires ou quadratiques. En particulier, on appelle
déterminant de P, le P-module ArpP qui est projectif de type fini et de rang 1

et on le note détP ([2]). On voit immédiatement que dét(P©0 détP
(x) dét Q. Les opérations Af et Sf et l'homomorphisme déterminant
s'étendent à K0 (P), tout entier ainsi qu'aux anneaux considérés dans la

partie 3 (si A e Pic (P), dét N A et l'inverse de A est A*; ainsi dét — [P])
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