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2.5. Formes alternées et formes quadratiques

Les deux remarques de 2.3 nous conduisent aux définitions suivantes:
Ly, (R) et Ly (R) sont deux anneaux commutatifs Z/(2)-gradués dont
les composantes homogenes de degré O sont K3% (R) pour chacun d’eux
et les composantes de degré 1 respectivement L,y (R); = K& (R) et
Ly (R); = K& (R). Le produit dans Ly (R) est défini a I'aide de I'appli-
cation de KA (R) x K53"(R) dans K3° (R) vue en 2.3. Celui de Ly (R)
est défini par la formule:

(b,q)(b',q") = (bb"+ 9, .0y, b.q" +b".9).

Lintérét de ces deux anneaux est qu’ils sont le cadre naturel des opéra-
tions A et ¢ sur les formes bilinéaires symétriques, alternées et quadratiques
que nous verrons en 3.

Si 2 est inversible dans R, la bilinéarisation est un isomorphisme de
K sur K3® et Ly = K3” (R) [x] avec x® = 1. Les anneaux L,y et Ly
jouissent des propriétés fonctorielles usuelles vis-a-vis de ’extension des
scalaires.

3. PUISSANCES EXTERIEURES ET PUISSANCES SYMETRIQUES

Les puissances extérieures sont un outil important de I’algebre lin€aire.
Nous souhaitons montrer ici que dans le cadre des modules bilinéaires ou
quadratiques des constructions semblables peuvent &tre faites. Cela per-
mettra de munir les anneaux rencontrés dans la partie précédente d’opé-
rations A et o.

3.1. Puissances extérieures de modules bilinéaires

Soit (M, ¢, N) un R-module bilinéaire; si N = A, la définition des
puissances extérieures de ¢ est bien connue ([3], [8]). Dans le cas général,
définissons I’application de M x M X ... x M, 2p fois, dans I’algébre
symétrique S (N) du R-module N qui a (x4, ..., Xps V1» +--» Vp) associe le
déterminant de la matrice des ¢ (x;, y;), ¢ (x; y))eN = S (N), sous
R-module de S (N). C’est une application multilinéaire par rapport aux x,
et y; et alternée vis-a-vis des x; d’un coté et des y; de 'autre. On obtient
ainsi un module bilinéaire (A?M, APp, SPN), la puissance extérieure pme
de (M, ¢, N). Si ¢ est e-symétrique, APp est e’-symétrique. Si @ est non




seulement antisymétrique mais alternée, A4??¢ est symétrique mais non
alternée en général (car O si 2 était inversible...). Cependant A4%4*1¢p est
alternée: en effet c’est un module antisymétrique et siz = x; A ... A x5, 4,
A% ¢ (z, 2) est le déterminant de la matrice alternée d’ordre impair formé
des ¢ (x;, x;) et donc vaut 0. Le méme raisonnement que celui qui a été
fait en 2.1 pour le produit tensoriel montre que A24* 1o est alternée.

3.2. Puissances extérieures de modules quadratiques

Si 2 est inversible dans R; modules quadratiques et modules bilinéaires
symétriques sont identiques. Ainsi si (M, ¢, N) est un module quadratique

s 1
sa p'“™ puissance extérieure est (A?M, APq, SPN) ot APq (x) = 5 AP, (%, )

et ¢ p, = AP@,. Par contre si 2 = 0 dans R, ¢, est alternée, de sorte qu’il

est impossible de définir A*"q convenablement car A*"¢p, est symétrique

mais non alternée en général et donc on ne pourrait pas avoir P q2n= Az”qoq.
q

Cependant, comme pour les formes alternées en 3.1, nous allons voir qu’il
est possible de définir raisonnablement A%"*1q.

LEMME 3.2.1. Soient A, =Z[X;],1 <i<j<n et 4,ledéterminant

2X11 X12 . . . . Xln

X12 2X22 o e s s in

X3 Xo3 oo .. Xa,
4, =

Xin Xon « -« . 2X,,

Si n est impair, il existe un élément P, de A, tel que A, = 2P,.

En réduisant modulo 2, on voit que 4, est le déterminant d’une matrice
alternée d’ordre impair, donc 0 modulo 2. Le polynéme P, est évidemment
unique. Soient maintenant (M, ¢, N) un module quadratique et n un entier
impair. On a la
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PROPOSITION 3.2.2. 1l existe un module quadratique (A"M,q, S"N) et
un seul tel que

(1) (Pq = An§0q
(i) gq(xy AoAXx,) =P,(a;) ou a; = g (x) et a; = @ (x x;) si
i <]

Dorénavant g sera notée A"g; 'unicité de A"g est claire car les condi-
tions (i) et (i) permettent de calculer A"g sur tout élément de A"M.

Pour montrer I’existence de A"g, considérons la suite exacte 0 — L
— R™) s M — 0 ot ’on note (e,),. la base canonique de R supposée
totalement ordonnée. Définissons sur A" R®™) une application quadratique
g’ a valeurs dans S" (M) par

q,(exl AR Aexn) = Pn (q (xi): @q (xiaxj))a I <j7
@' (ex; Ao Aey ey Ao ney ) = dét (@, (x;, ), 1 <i,j<n
et
X< ooo <Xy V1 < oo < Yy

Dans la suite exacte 0 - L' — A"R™ - A"M — 0, le sous-module L’
est engendré par les éléments de la forme

(€ax =€) A €y A .o A ey
et
(exiy—€x—e) Aexy A .. A ey

ou X, y, X3, ..., X, sont dans M et a dans R. Il est facile de vérifier que L’
est contenu dans le noyau de ¢’ (i.e. { 7| 1€ A"R™, ¢’ (1) = O et @,/ (1, 2)
=0,V ze R™ }). Par exemple

q' ((eax —ae,) Aewy A... A&y )
= q'(ex Nexy A Aey ) + a’q(e  Newy A Aey)

— aQ" (g Nlxy Ao Ay € Nexy A ... neg ) =0
et, de méme

@' ((eyx —ae,) Aewy A ... Aey ey A ... /\eyn) = 0.

Pour les éléments de la seconde forme, la nullité de ¢’ exprime le caractére
quadratique de I’application x > g’ (e, A €s, A ... A e, ) et on montre
aussi facilement 1’orthogonalité de L’ avec tout élément de A"R™. Comme
le noyau de ¢’ contient L', ’application quadratique ¢’ passe au quotient
en une application quadratique § = A"q de A"M dans S"N vérifiant les
conditions (i) et (ii) par construction.
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Remarque 3.2.3. Supposons que N e Pic (R), alors S?(N) = N®
est dans Pic (R) de sorte qu’on peut se préoccuper de la non dégénérescence
des formes en question. Il est clair que, comme cela ne dépend que des
formes bilinéaires, les puissances extérieures de modules bilinéaires et de
modules quadratiques non dégénérés sont non dégénérés. Notons ici que,
bien que cela ne soit pas dans la méme catégorie, on appellera encore
puissance extérieure de ¢, alternée, ou de ¢, quadratique, le module bilinéaire
symétrique A**¢ ou A*¢, selon les cas. Tout cela commute naturellement
a 'extension des scalaires.

3.3. Puissances extérieures d une somme orthogonale

Soient (M, ¢, N) et (M’, ¢’, N) deux modules bilinéaires e-symétriques
ou alternés. La formule bien connue pour les puissances extérieures de la
somme directe de deux modules est encore valable pour la somme ortho-
gonale des deux modules bilinéaires (M, @) et (M’, @").

En effet, en tant que module A? (M @M"') est la somme directe des
produits tensoriels A"M ® AP7"M’', 0 < r < p. 11 suffit donc de vérifier
que cette décomposition est une décomposition orthogonale vis-a-vis de
la forme bilinéaire A? (p L¢’) et que la restriction de cette derniére sur
chaque facteur est A"p ® A7 "¢’.

On a des formules analogues pour les modules quadratiques en dis-
r=2p+1

tinguant bien suivant les parités. Ainsi A??*!(¢Llq’) ~ L A'q
r=0

® APTD g’ ou I'on notera que A°g est I’élément unité pour la multi-
plication de K32 et que si r est pair, (2p+1)—r est impair, si bien que
I'une des deux formes A'q et A??*17rg’ est une forme quadratique et

que l'autre est un module bilinéaire symétrique, le résultat final étant
2p

toujours un module quadratique. Par contre A%’ (glg’) ~ 1 A'q
r=0

® A*?7"q’ de sorte que r et 2p —r sont toujours de méme parité. Si r
est pair, on a deux modules bilinéaires symétriques dont le produit est un
module bilinéaire; si r est impair, on a deux modules quadratiques dont le
produit doit étre considéré comme un module bilinéaire (cf. 2.2 et 2.5).

Cela montre en particulier que si ¢ (resp. g) est un module bilinéaire
(resp. quadratique) non dégénéré, la classe de AP¢ (resp. APq) dans le
groupe universel correspondant ne dépend que de la classe de ¢ (resp. de
q). En effet, on montre par récurrence sur p que si ¢ L ¢; ~ @' L ¢4,
alors AP¢ et AP¢’ sont stablement isomorphes et de méme pour les formes
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quadratiques. On remarque alors que si ¢ est un module bilinéaire et ¢
une indéterminée, on peut poser

A,(p) = [A7 ()] 1

b
agk

1

ol [A? (¢)] est dans un groupe universel convenable. Les considérations
du début du paragraphe montrent que A, (Lo )=4, (¢). A ().
Comme A, (0) est I’édlément neutre de I’anneau K3% (R), on déduit for-
mellement A, (— @) comme [A4, (¢)]” " la série formelle, inverse du poly-

o0
nome 1 + > [A? (¢)] tP. Maintenant si z = @; — ¢, est la différence
p=0

de deux modules bilinéaires, on définit A, (z) = 4,(p;) [4, ()] et
AP (2) est le coefficient de degré p de la série formelle A4, (z). On a ainsi

défini des opérations A? de K, (N) dans K, (N®%) ol * = . si p est impair

et * = SBsip est pair de sorte que A, défini par 4,(z) = 1 + > A7 (2)¢?
est additive en z. p=d

Nous n’avons parlé ici que de modules bilinéaires mais il est tout a fait
clair que ce formalisme s’adapte tout a fait au cas quadratique.

3.4. Pré A-anneaux et A-anneaux

Nous rappelons ici brievement les notions de A et de pré Z-anneaux
(141, [10]).

Définition. Un pré-A-anneau est un anneau commutatif et unitaire K,
muni d’un homomorphisme de groupes abéliens

At K- U(K [[t]])
tels que 4, (x) = 1 + x¢t + ...

Cela équivaut a la donnée des applications A : K — K vérifiant les
conditions

) 2 =1
(i) A!(x) = x
(i) " (x+y) = Y AP(x).M(), Vx,yek, YneN.

p+q=n

Un homomorphisme de pré-i-anneau de (K, A) dans (K’, 2') est un
homomorphisme d’anneau f qui commute aux opérations A.

Dans [10], on définit sur le groupe abélien 1 + K [[¢t]]* des séries for-
melles une multiplication * distributive, associative et commutative dont
I 4 7 est élément unité. Sur ce nouvel anneau commutatif et unitaire,

L’Enseignement mathém., t. XXVI, fasc. 1-2. 6
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les A' permettent de définir des opérations A sur K’ = 1 + K [[¢]]*. On
dit que K est un A-anneau si A, est un homomorphisme d’anneaux de K
dans K’ compatible avec les opérations A’ sur K et K'.

Par exemple on vérifie aisément que Z muni des A-opérations A’ (n)
_nm=1) .. (n—i+1)

est un A-anneau.

i!
En fait, un pré-i-anneau est un A-anneau si et seulement si les opé-
rations A' vérifient deux séries de relations:

{ A(xy) = P21 (%), 22 (%), ..., A (x); A (1), .l A (D))
M) = 0 (A (), ..., AV (x))

ou les polynémes P; et Q; ; sont des polynémes universels (i.e. indépendants
de K), PieZ[Xy, ..., X;; Yy, ., Y], Q;;€Z[X, X,, ..., X;;] et x ety
décrivent K. Les polynémes P; et Q, ; vérifient certaines conditions d’homo-
généité et de symétrie qu’on trouvera dans [10] (voir aussi [4]).

D’autres exemples de A-anneau sont I’anneau des classes de fibrés vec-
toriels sur un espace topologique compact et ’anneau K, (R) des classes
de R-modules projectifs de type fini.

3.5. Opérateurs A sur L, et L,

Les considérations précédentes permettent de voir immédiatement
que K5? (R) est muni d’une structure de pré-A-anneau par I’intermédiaire
des applications A’. En fait les anneaux de 2.6, Ly, (R) et L, (R) sont
aussi des pré-A-anneaux: on posera a cet effet

A(ag,ay) = A, (aq, 0) 4,(0, a,)

ou 4, (ay, 0)el + K% (R)[[t]]" comme vu précédemment et A, (0, a,)
=1+ 0,a)t+ (A%a;,00¢* + ... + (0, A% ta) 11 + (4%a,, 0) t**
+ ... En fait, ce sont des pré-i-anneaux Z/(2)-gradués en ce sens que
A'(L;) = L;j, le produit ij étant calculé modulo 2.

De la méme fagon, I’anneau L = K5% (R) gradué sur Pic (R) est un
pré-i-anneau Pic (R)-gradué en ce sens que A'(Ly) < Ly, iN = N®
Tous les foncteurs oublis induisent des homomorphismes d’anneaux a
valeurs dans K, (R) qui sont des pré-A-homomorphismes.

On notera ici que les opérations A ne passent pas au quotient par les
espaces hyperboliques car les puissances extérieures paires d’une forme
hyperbolique ne sont pas hyperboliques, bien que ce soit le cas pour les
puissances extérieures impaires.

i
|
)
|
i
|
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3.6. Puissances symétriques
Soit Pe P (R) et S* (P) la k®™ puissance symétrique du R-module P.
On pose o,(P) = Y [S*(P)]t*eK,(R)[[t]] et o, se prolonge en un

k=0

homomorphisme de groupes abéliens de K, (R) dans U (K, (R) [[t]]).- On

définit ainsi des opérations o* : Ky (R) = Ko (R) et 0, (x) = Y. o* (x) ¢~
k=0

On démontre & 1’aide du complexe de Koszul ([2]) la formule

(D A (x)o_,(x) =1

pour tout x dans K, (R). Si f est un endomorphisme de P, on peut associer
4 £, un polyndme et une série formelle a coefficients dans R, en posant

A (f) = i Tr (A () ¢! et o, (f) = i Tr(S7(f))¢/. On a alors

la formule analogue

(2) A(f)o-.(f) =1

qui peut se démontrer directement a 'aide du complexe de Koszul comme
dans [2], ou bien en se ramenant au cas ou P libre puis ol R = Z [X;] et
enfin & celui ol R est un corps algébriquement clos, auquel cas f est trian-
gularisable; les traces se calculent alors en fonction des valeurs propres de
fy A{y ..., A, €t la formule & montrer est une identité bien connue. Les for-
mules (1) et (2) peuvent se combiner en considérant la catégorie des couples
(P,f), Pe P(R), fe Endy (P) dont le groupe universel K, (R, N) possede
des opérations A et ¢ et vérifie la formule (1).

Nous allons montrer ici comment on peut définir des puissances symé-
triques de fagon directe pour les modules bilinéaires et pour les modules
quadratiques. Rappelons que le permanent d’une matrice a;; € M, (R) est

n

le scalaire ), [] @io;y, qui coincide avec le déterminant en carac-

geo, i=1

téristique 2.

Soit alors (M, ¢, N) un module bilinéaire; la puissance symétrique
p™ se définit en considérant I’application QUi & (X1, ey Xp5 Vs ees Vp)
e M?? associe le permanent de la matrice ¢ (x,, y;), €lément de S? (N).
C’est une application linéaire par rapport aux x; et aux y; et symétrique
séparément par rapport & chaque ensemble de p variables x5, ..., Fops P s o Vg
On obtient ainsi un module bilinéaire (S?M, SPp, SPN); si ¢ est e-symé-
trique, SPp sera &”-symétrique et on voit comme dans 3.1 que si @ est
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alternée, SP¢@ est alternée pour p impair (le permanent d’une matrice
alternée d’ordre impair est 0). En utilisant la méme technique que pour
les puissances extérieures (le lemme 3.2.1 a un énoncé analogue en rem-
plagant A, par le permanent des X;;), on montre qu’un module quadratique
(M, q, N) posséde des puissances symétriques impaires (S2?* 1M, §27*1q,
S2PT1N) avec Ps2p+1, = S?7*1g,; pour puissances symétriques d’ordre

pair, il est naturel de prendre les puissances correspondantes de ¢,.

p
Comme on a la formule S? (pLgp’) ~ L S"(p)® S? "¢, ¢ et ¢’

r=0
étant deux modules bilinéaires de méme nature, on voit qu’on peut définir

sur les anneaux Ky° (R), La, (R), Ly (R), K3® (R) des opérations ¢ de

gt o0

sorte que x > » " (x) ¢* est un homomorphisme de groupes abéliens o,.
k=0

La formule 1 = A_,(x) g, (x) est claire si R est un corps, ou méme un
anneau semi-local, car il suffit de la montrer pour un module de rang 1
ou 2; elle doit €tre vraie dans le cas général.

3.7. Probleme

Bien que cela paraisse naturel, en particulier 2 cause de ’analogue en
K-théorie topologique, je ne sais pas montrer que les anneaux introduits
dans la 2° partie sont des A-anneaux (cf. 3.4). Cest, comme plus haut,
vrai si R est semi-local car alors on est ramené a démontrer les formules
universelles pour des modules de rang 1 ou 2 (si 2 n’est pas inversible). Il
en est naturellement de méme pour les modules quadratiques et alternés.

4. A-ANNEAUX ET ANNEAUX DE WITT-GROETHENDIECK

Dans ce paragraphe, nous rassemblons quelques remarques et résultats
concernant les anneaux rencontrés en 2 et 3 et leurs opérations 4. Du fait |
de 4.3, nous nous intéressons principalement aux anneaux de groupes |
abéliens et a certains de leurs quotients ([6]). |

4.1. Le A-anneau Z [G]

Soit G un groupe abélien noté multiplicativement, Z [G] son anneau
de groupe et Q [G] la Q-algébre du groupe G. La formule 4,(e)) = 1
+ te,e Z[G][[t]l, g €G, fait de Z [G] un l-anncau: il suffit en fait de |
le montrer pour Q [G] et, comme il s’agit d’'une Q-algebre, il suffit d’apres §
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