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2.5. Formes alternées et formes quadratiques

Les deux remarques de 2.3 nous conduisent aux définitions suivantes:

LAlt (R) et Lq (R) sont deux anneaux commutatifs Z/(2)-gradués dont

les composantes homogènes de degré 0 sont KqB (R) pour chacun d'eux

et les composantes de degré 1 respectivement LAlt(R)1 Kq](R) et

Lq (R)i Kg (R). Le produit dans LMt (R) est défini à l'aide de l'application

de Kolt (R) x (R) dans KBB (R) vue en 2.3. Celui de LQ (R)
est défini par la formule:

(b9q)(b'9q') (bb' + cpq cpq>, b qf F b' q)

L'intérêt de ces deux anneaux est qu'ils sont le cadre naturel des opérations

X et a sur les formes bilinéaires symétriques, alternées et quadratiques

que nous verrons en 3.

Si 2 est inversible dans R, la bilinéarisation est un isomorphisme de

Kg sur Kbb et LQ KBB (R) [x] avec x2 1. Les anneaux LAh et LQ

jouissent des propriétés fonctorielles usuelles vis-à-vis de l'extension des

scalaires.

3. Puissances extérieures et puissances symétriques

Les puissances extérieures sont un outil important de l'algèbre linéaire.
Nous souhaitons montrer ici que dans le cadre des modules bilinéaires ou
quadratiques des constructions semblables peuvent être faites. Cela
permettra de munir les anneaux rencontrés dans la partie précédente
d'opérations X et <7.

3.1. Puissances extérieures de modules bilinéaires

Soit (M, <p, N) un É?-module bilinéaire; si N A, la définition des

puissances extérieures de cp est bien connue ([3], [8]). Dans le cas général,
définissons l'application de M X M x x M, 2p fois, dans l'algèbre
symétrique S (N) du .fl-module N qui à (xu xp9 yu yp) associe le
déterminant de la matrice des <p (xi9 yf), cp (xi9 yj) e N S1 (N), sous
i?-module de S (N). C'est une application multilinéaire par rapport aux xt
et yj et alternée vis-à-vis des xt d'un côté et des ys de l'autre. On obtient
ainsi un module bilinéaire (APM, Apcp, SPN), la puissance extérieure pièmG

de (M, cp, N). Si <p est 8-symétrique, Apcp est ep-symétrique. Si cp est non
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seulement antisymétrique mais alternée, A2p(p est symétrique mais non
alternée en général (car 0 si 2 était inversible...). Cependant A2q+1cp est

alternée: en effet c'est un module antisymétrique et si z x1 A A x2q+1,
A2q+ 1

(p (z, z) est le déterminant de la matrice alternée d'ordre impair formé
des cp (xh Xj) et donc vaut 0. Le même raisonnement que celui qui a été

fait en 2.1 pour le produit tensoriel montre que A2q+ 1cp est alternée.

3.2. Puissances extérieures de modules quadratiques

Si 2 est inversible dans R; modules quadratiques et modules bilinéaires
symétriques sont identiques. Ainsi si (M, q, TV) est un module quadratique

sapieme puissance extérieure est (APM, Apq, SPN) où Apq (x) — Apcpq(x,x)

et (pAPq Ap(pq. Par contre si 2 0 dans R, (pq est alternée, de sorte qu'il
est impossible de définir A2hq convenablement car A2hcpq est symétrique
mais non alternée en général et donc on ne pourrait pas avoir (p 2h A2h(pq.

Cependant, comme pour les formes alternées en 3.1, nous allons voir qu'il
est possible de définir raisonnablement A2h+1q.

Lemme 3.2.1. Soient An Z [X^], 1 < i <y < n et An le déterminant

2*ii *12 • • • • *1»

*12 2*22 • • • • *2n

*13 *23 • • • • *3„

An

Xln X2n 2Xnn

Si n est impair, il existe un élément Pn de An tel que An ~ 2Pn>

En réduisant modulo 2, on voit que An est le déterminant d'une matrice
alternée d'ordre impair, donc 0 modulo 2. Le polynôme Pn est évidemment

unique. Soient maintenant (M, q, TV) un module quadratique et n un entier

impair. On a la
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Proposition 3.2.2. Il existe un module quadratique AnM, q, S"N) et

un seul tel que

(i) cpq Ancpq

(ii) q(pc^ a a x„) Pn (a>ij) ou an q (x^) et j ^7) si

i < j.

Dorénavant û sera notée Anq ; l'unicité de /Lng est claire car les conditions

(i) et (ii) permettent de calculer A"q sur tout élément de AnM.
Pour montrer l'existence de A"q, considérons la suite exacte 0 -» L
R(M) M -> 0 où l'on note (ex)xeM la base canonique de R(M) supposée

totalement ordonnée. Définissons sur AnR(-M) une application quadratique
q

' à valeurs dans Sn (M) par

q'{eHaa Pn (q (xt),(pi Xj)), i

(p'exiaa eXn, enaa dét (çq yjj), 1< ij < n

et

Xi < < xtt9yt < < yn.

Dans la suite exacte 0 -> V yTi?(M) -> /["M -> 0, le sous-module Lr
est engendré par les éléments de la forme

(ßax A ^2 A ••• ^ ^xn
et

(.^x + y &x ^y) A &%2 A A eXn

où X, y, x2, xn sont dans M et a dans R. Il est facile de vérifier que V
est contenu dans le noyau de q' (i.e. { t | t e AnR(M\ q' (t) 0 et <pqf (,t, z)

0, V * e R{M) } )• Par exemple

I ' ((eax ~aex) a eX2 a a
(eax A a a + a2^r (ex a eX2 a a e*n)

- a(P'(ßaxAex2A... AeXn,exAeX2A... AeXj) 0

et, de même

Cl^x) A ^2 A A j A A 0

Pour les éléments de la seconde forme, la nullité de q' exprime le caractère
quadratique de l'application x q' (ex a eX2 a a eXn) et on montre
aussi facilement l'orthogonalité de L' avec tout élément de UAnR(M). Comme
le noyau de q' contient L', l'application quadratique q' passe au quotient
en une application quadratique q Anq de AnM dans SnN vérifiant les
conditions (i) et (ii) par construction.



Remarque 3.2.3. Supposons que TV e Pic (R), alors Sp (N) iV®P

est dans Pic (R) de sorte qu'on peut se préoccuper de la non dégénérescence
des formes en question. Il est clair que, comme cela ne dépend que des

formes bilinéaires, les puissances extérieures de modules bilinéaires et de

modules quadratiques non dégénérés sont non dégénérés. Notons ici que,
bien que cela ne soit pas dans la même catégorie, on appellera encore
puissance extérieure de cp, alternée, ou de q, quadratique, le module bilinéaire
symétrique A2hcp ou A2hcpq selon les cas. Tout cela commute naturellement
à l'extension des scalaires.

3.3. Puissances extérieures d'une somme orthogonale

Soient {M, cp, N) et (M', cp', N) deux modules bilinéaires e-symétriques
ou alternés. La formule bien connue pour les puissances extérieures de la

somme directe de deux modules est encore valable pour la somme
orthogonale des deux modules bilinéaires {M, cp) et (M', cp').

En effet, en tant que module Ap (M ©M') est la somme directe des

produits tensoriels ArM 0 Ap~rMf, 0 < r < p. Il suffit donc de vérifier

que cette décomposition est une décomposition orthogonale vis-à-vis de

la forme bilinéaire Ap (cplcp') et que la restriction de cette dernière sur
chaque facteur est Arcp 0 Ap~rcp'.

On a des formules analogues pour les modules quadratiques en dis-
r=2p+1

tinguant bien suivant les parités. Ainsi A2p+1 (qlq') ~ _L Arq
r 0

0 y[(2P+i)~rqf 0^ pon notera que A°q est l'élément unité pour la
multiplication de KqB et que si r est pair, (2p+\) — r est impair, si bien que
l'une des deux formes Arq et A{2p+1)~rq' est une forme quadratique et

que l'autre est un module bilinéaire symétrique, le résultat final étant
2 p

toujours un module quadratique. Par contre A2p(q-Lq')~ _L Arq
r o

0 Alp~rq' de sorte que r et 2p—r sont toujours de même parité. Si r
est pair, on a deux modules bilinéaires symétriques dont le produit est un
module bilinéaire; si r est impair, on a deux modules quadratiques dont le

produit doit être considéré comme un module bilinéaire (cf. 2.2 et 2.5).
Cela montre en particulier que si cp (resp. q) est un module bilinéaire

(resp. quadratique) non dégénéré, la classe de Apcp (resp. Apq) dans le

groupe universel correspondant ne dépend que de la classe de cp (resp. de

q). En effet, on montre par récurrence sur p que si cp _L cpt ~ cp' ± cpu
alors Apcp et Apcp' sont stablement isomorphes et de même pour les formes



quadratiques. On remarque alors que si cp est un module bilinéaire et t

une indéterminée, on peut poser
oo

ao) z
p= i

où [Ap(<p)] est dans un groupe universel convenable. Les considérations

du début du paragraphe montrent que AO')-
Comme At(0)est l'élément neutre de l'anneau on déduit

formellement At(-(p) comme [AOXT1 série formelle, inverse du poly-
co

nôme 1 + £ [Ap(cp)]t".Maintenantsi z q>1 est la différence
p 0

de deux modules bilinéaires, on définit At(z) At (cpfi [At (cp2)]~1

AP (.z) est le coefficient de degré p de la série formelle At (z). On a ainsi

défini des opérations Ap de K0 (N) dans K*0 (N®P) où si p est impair
00

et * SB si p est pair de sorte que At défini par At (z) 1 + ^ Ap (z) tp

est additive en z.
P~1

Nous n'avons parlé ici que de modules bilinéaires mais il est tout à fait
clair que ce formalisme s'adapte tout à fait au cas quadratique.

3.4. Pré À-anneaux et À-anneaux

Nous rappelons ici brièvement les notions de À et de pré 2-anneaux

([4], [10]).

Définition. Un pré-A-anneau est un anneau commutatif et unitaire K,
muni d'un homomorphisme de groupes abéliens

K U(K[[t]])tels que Àt (x) 1 + x t +
Cela équivaut à la donnée des applications À1 : K -> K vérifiant les

conditions

(i) r(x) î

(ii) A1 (x)x
(Hi) ^(*+ y)Z Ap (x). A9 (} >)N.

p + q n

Un homomorphisme de pré-A-anneau de (.K, À) dans (K', À') est un
homomorphisme d'anneau / qui commute aux opérations À.

Dans [10], on définit sur le groupe abélien 1 + i£[M]+ des séries
formelles une multiplication * distributive, associative et commutative dont
1 + / est élément unité. Sur ce nouvel anneau commutatif et unitaire,

L'Enseignement mathém., t. XXVI, fasc. 1-2. 6
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les X1 permettent de définir des opérations X sur K' 1 + i^[[^]] + On
dit que K est un A-anneau si Xt est un homomorphisme d'anneaux de K
dans K' compatible avec les opérations X1 sur K et K'.

Par exemple on vérifie aisément que Z muni des A-opérations A1 (n)

n(n — 1) (n — i + 1)
est un A-anneau.

z

En fait, un pré-A-anneau est un A-anneau si et seulement si les

opérations A1 vérifient deux séries de relations:

A'(*j) Pi(X1 (x), A2 (x), Al'(x); A1 (y)9 A1'(y))

AJ (A1 (x)) Ôî.j^A1 W, • ••, Al7(x))

où les polynômes Pt et Qitj sont des polynômes universels (i.e. indépendants
de K\ Pt g Z [Xu X-; Yu ZJ, QtJ g Z [Z1? Xl9 Z/y] et x et y
décrivent K. Les polynômes Pt et Qi j vérifient certaines conditions d'homogénéité

et de symétrie qu'on trouvera dans [10] (voir aussi [4]).
D'autres exemples de A-anneau sont l'anneau des classes de fibrés

vectoriels sur un espace topologique compact et l'anneau K0 (R) des classes

de i?-modules projectifs de type fini.

3.5. Opérateurs X sur LAIt et LQ

Les considérations précédentes permettent de voir immédiatement

que KqB (R) est muni d'une structure de pré-A-anneau par l'intermédiaire
des applications A1. En fait les anneaux de 2.6, LMt (R) et LQ (R) sont
aussi des pré-A-anneaux : on posera à cet effet

^(ao,^) At(ûfQ3>0) Af(0,fli)

où Xt (a0, 0) g 1 + KqB (R) [[^]]+ comme vu précédemment et Xt (0, at)
1 + (0, ajt + (.A2au0)t2 + + (0, Ä2k~'aj t2k~ 1 + (A2kau0)t2k

+ En fait, ce sont des pré-A-anneaux Z/(2)-gradués en ce sens que
A1 (Lj) cz Ltj, le produit ij étant calculé modulo 2.

De la même façon, l'anneau L KBB (R) gradué sur Pic (R) est un
pré-A-anneau Pic (i?)-gradué en ce sens que X1 (LN) c LiN, iN TV01.

Tous les foncteurs oublis induisent des homomorphismes d'anneaux à

valeurs dans K0 (R) qui sont des pré-A-homomorphismes.
On notera ici que les opérations A ne passent pas au quotient par les

espaces hyperboliques car les puissances extérieures paires d'une forme

hyperbolique ne sont pas hyperboliques, bien que ce soit le cas pour les

puissances extérieures impaires.
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3.6. Puissances symétriques

Soit PeP (R) et Sk(P)la icième puissance symétrique du ^-module P.
00

On pose ot(P) £ [S*(-P)](-R) [M] et at se prolonge en un
k=0

homomorphisme de groupes abéliens de (R) dans (K0 (R) [[?]]). On
00

définit ainsi des opérations crk : K0 (R) -> K0 (R) et crt(x) Y °k (x)
/c= o

On démontre à l'aide du complexe de Koszul ([2]) la formule

(1) 2f0)<7_,0) 1

pour tout x dans K0 (R). Si/ est un endomorphisme de P, on peut associer

à /, un polynôme et une série formelle à coefficients dans R, en posant
00 00

W) £ 7> (4'(/))*' et crt (/) y (/)) On a alors
i=o i=o

la formule analogue

(2) ^(/)(T_,(/) 1

qui peut se démontrer directement à l'aide du complexe de Koszul comme
dans [2], ou bien en se ramenant au cas où P libre puis où R Z [X^] et

enfin à celui où R est un corps algébriquement clos, auquel cas/ est trian-
gularisable; les traces se calculent alors en fonction des valeurs propres de

/, Xn et la formule à montrer est une identité bien connue. Les
formules (1) et (2) peuvent se combiner en considérant la catégorie des couples

(P,/), P e P (P), /g End# (P) dont le groupe universel K0 (R, N) possède
des opérations X et o et vérifie la formule (1).

Nous allons montrer ici comment on peut définir des puissances
symétriques de façon directe pour les modules bilinéaires et pour les modules
quadratiques. Rappelons que le permanent d'une matrice au e Mn (R) est

n

le scalaire Y FI ai°(0' coïncide avec le déterminant en carac-
<Tean i=l

téristique 2.

Soit alors (M, cp9 N) un module bilinéaire; la puissance symétrique
/feme se définit en considérant l'application qui à (xu xp; yu...,yp)
eMlp associe le permanent de la matrice cp (xt, yß, élément de Sp (N).
C'est une application linéaire par rapport aux xt et aux y} et symétrique
séparément par rapport à chaque ensemble de p variables xu xp;yt, ...,yp
On obtient ainsi un module bilinéaire (SPM, Spcp, SPN); si cp est s-symé-
trique, Spcp sera e^-symétrique et on voit comme dans 3.1 que si cp est
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alternée, Spcp est alternée pour p impair (le permanent d'une matrice
alternée d'ordre impair est 0). En utilisant la même technique que pour
les puissances extérieures (le lemme 3.2.1 a un énoncé analogue en

remplaçant A n par le permanent des Xtj), on montre qu'un module quadratique
(M, q, N) possède des puissances symétriques impaires (S2p+1M, S2p+1q,

S2p+1N) avec <Ps2p+iq S2p+ 1<Pq\ pour puissances symétriques d'ordre

pair, il est naturel de prendre les puissances correspondantes de cpq.
p

Comme on a la formule Sp((p±cp') ~ _L Sr (cp) ® Sp~rcp\ cp et cp'
r=o

étant deux modules bilinéaires de même nature, on voit qu'on peut définir

sur les anneaux KBB (R), LAlt (R), LQ (R), KBB (R) des opérations cr de
<yt co

sorte que x ^ <jk (x) tk est un homomorphisme de groupes abéliens <rt.
k 0

La formule 1 — À_t(x) <jt(x) est claire si R est un corps, ou même un
anneau semi-local, car il suffit de la montrer pour un module de rang 1

ou 2; elle doit être vraie dans le cas général.

3.7. Problème

Bien que cela paraisse naturel, en particulier à cause de l'analogue en

TCthéorie topologique, je ne sais pas montrer que les anneaux introduits
dans la 2e partie sont des 2-anneaux (cf. 3.4). C'est, comme plus haut,
vrai si R est semi-local car alors on est ramené à démontrer les formules
universelles pour des modules de rang 1 ou 2 (si 2 n'est pas inversible). Il
en est naturellement de même pour les modules quadratiques et alternés.

4. 2-anneaux et anneaux de Witt-Groethendieck

Dans ce paragraphe, nous rassemblons quelques remarques et résultats

concernant les anneaux rencontrés en 2 et 3 et leurs opérations X. Du fait
de 4.3, nous nous intéressons principalement aux anneaux de groupes
abéliens et à certains de leurs quotients ([6]).

4.1. Le X-anneau Z [G]

Soit G un groupe abélien noté multiplicativement, Z [G] son anneau
de groupe et Q [G] la Q-algèbre du groupe G. La formule Xt (eg) 1

+ t eg e Z [G] [[*]], g e G, fait de Z [G] un 2-anneau: il suffit en fait de

le montrer pour Q [G] et, comme il s'agit d'une Q-algèbre, il suffit d'après


	3. Puissances extérieures et puissances symétriques

