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AY,; is a subgroup of G and two diagonal elements in the same (weak)
component are conjugate since we may show:

14 Vv
AVii.gzg.Aij=Aij forany gEA ij

In particular if all circuits on non-empty edges correspond to the group
identity then in 4" each entry has at most one element. For example given
a matrix 4 over < R, + > we determine from 4" for each component of
the graph whether there are (weak) circuits with non-zero sums. If all
circuits sum to zero then the graph is a “potential” graph, i.e. there is a
function pot : R — {vertices} such that each edge < u,v > has the value
(pot (v) — pot (v)). Similarly over < Z,, + > we may determine whether
each weak circuit of a directed graph has zero sum where forward and
backward edges are accounted +1 and —1 respectively. Naturally we may
find it convenient in some cases to hold only a homomorphic image of
P (G) for the computations e.g.

h(g) =@
h({g}) =g

h(a) = o when |a|>1.

5. PROOFS OF CORRECTNESS

An operator ¢ is monotonic if A < Bimplies 4% = B®. , is not a mono-
tonic operator but rather surprisingly ¥ is. To simplify our proofs we
introduce several monotonic operators. Define ¢; by the program

A= A A,
fork: =i+ 1stepl until ndo A : = A U 4, A;u
and ¢; analogously using “/ — 1 step —1 until 1”. Both are obviously

monotonic. @ and &’ are defined from ¢; and ¢; in a similar way to ¥
and ¥’. Although ¥ < ¢ is evident, the following result is not.

THEOREM 5. ¥ = @ (and ¥' = @').

Proof. Consider y; applied to an arbitrary matrix 4 and suppose it
- selects the index k with 4, # @. (If no index is selected then of course
- AV = 4% We verify that:
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(1) A¢i it 1 -Pp_1 = A¢i+1"'¢k—1 ¢i and similarly for 'ﬁi in
place of ¢;

and (ii) AYi ok = 4% %

(1) is immediate since ¢; and y; do not affect any rows with indices between
i and k.
To verify (ii) we check that 4¥i % o A%isince forj > k

(A3 %) ;0 2 Ay

We also note that ¢, ¢, = ¢,
The proof of the Theorem is by induction on i from » to 1 for the equation

Gy = Wiy

This is trivial for i = n, while for i = 1 it is the result to be proved. Suppose
the equation true for i + 1, and then for an arbitrary 4:

Vivig1 V¥ _ A‘/’i¢i+1---¢n

A by inductive hypothesis

Either 4”' = 4% and we are done or Ik > i which is selected in Y, on A.
Then

AVi ®it1 ¢ — APit1-Pk—1Vi P by (i)
— A®i+ 1 Pk—1%i % by (ii)
= 4%t by (i)
The induction step now follows easily. ]

In the proof of the Main Theorem below we need the following results.

LemMmA 1.
i) oD =9 (and @'d' = D)
(ii) A®°®" 244 v 4 (and A®'® 2 A4 v A)

(iii) A®?'® 2 A4A v A4 v A

Proof.
(i) We may verify directly that for i <j, ¢; ¢; S ¢; ¢;
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Then

PP = ¢y ... ¢pP1 ... Dy
S ¢10.0,0, ... 0,0, by repeated application of above inclusion

= ¢ < PP
(ii) Consider an arbitrary contribution A, A;; to AA.
If k > ithen A, A,; < A" < 4°
else Ay Ay = A% = A%

(iii)) A%%'? = (A®®)*'? 2 (44 v A)®'°

W]
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A\N|
In
b;
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(oW
d
7y
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(@]
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=
(¢)
(o
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LEmMMa 2. If B2 A4

then BUY B =2 44" 4

Proof.

Ifj <k Ay A, < S A, Uy

Ifj >k, Ay Ap S Ay A Ay Ay © Ay By < Ay, U,y
Thus 44 = A(U v U). Similarly A4 < (Uu U) 4
Also A4 = Band A4 < B, so that A4 = (U u D)

A;; B

Jk——

From these inclusions we may derive

N

AT s (Uu D)
AT = BU"
AT = U"B
A" <« BU'B

SN NN
+ o+ o+

In

and finally
AAYA = (AYAMN* < BU'B ]
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We shall consider weak paths which start with a backward edge, end
with a forward edge and contain only those edges < i,j > with r <i <j
for some threshold . Hence we define the operators n, for 1 <<r <<n + 1.

X" = X(WUDYXuX
where U}, = X, if r <i <j

= ¢ otherwise

LEMMA 3.

T, S Q. for 1 <r <n.
Proof. Let X be an arbitrary matrix, with U‘" defined as above and

Y=UDoUD, Let Z = x".
er Yr*r Yrk = XTjXrI:er = ij
and likewise

er Yr: Yrk = Z];

Similarly to deal with the ends of the paths,

XaY,*Y,<Za if r<k
Y, Y, * X Z;« 1f r<i
XY, *X,.S Z.Z,. inany case

These inequalities show that internal edges of a path which visit vertex r

can be replaced, so that Z "*! is sufficient. N
The effort is now behind us and the Main Theorem comes easily.

THEOREM 6.
(i) Q =yYyYyy

(i) V =RY'VPY
(i) W = Sy’

Proof. The only matters requiring detailed proof are that the righthand §
transforms include Q. Let A4 be an arbitrary matrix. g

i
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For (i), define B = A¥ET

= A%2%°? by Theorem 5
> AAAVAA U A by Lemma 1 (iii)
Therefore A2 < B™ from Lemma 2

For (ii) and (iii), let B = 4°
ARYY = (1 0A)®? by Theorem 5
ST uAd(IuA byLemmal (i)
2AUA
=B

Also in this case, 42 < B"*
In view of Theorem 5 and Lemma 1 (i) we have only to show now that
B"!' = B?? to complete the proof. Using Lemma 3 repeatedly:

T, S Py, S P1Pmy S .0 S P,y
But
X 't = XX uX < Xx®%
therefore

n, S OPP = PP’ a

6. CONCLUSION

The close examination of a simple, practical matrix algorithm has led us
to novel theoretical questions and to potentially useful generalizations of
the algorithm. The principal contribution of this work to the programmer
is the introduction of several very fast closure algorithms and the establish-
ment of their correctness. The problems we have encountered in the theory
of relations and closure operations have whetted our curiosity and suggest
that further investigation may be rewarding.
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