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Avn is a subgroup of G and two diagonal elements in the same (weak)

component are conjugate since we may show :

Avu .gg Av]}AviJ for any g e

In particular if all circuits on non-empty edges correspond to the group
identity then in Av each entry has at most one element. For example given
a matrix A over < R, + > we determine from Av for each component of
the graph whether there are (weak) circuits with non-zero sums. If all
circuits sum to zero then the graph is a "potential" graph, i.e. there is a

function pot : R -> {vertices} such that each edge < u, v > has the value

(pot (v) - pot (w)). Similarly over < Zk9 + > we may determine whether
each weak circuit of a directed graph has zero sum where forward and
backward edges are accounted +1 and — 1 respectively. Naturally we may
find it convenient in some cases to hold only a homomorphic image of
P (G) for the computations e.g.

h (0) — 0

h({9}) 9

h (a) — co when | a | > 1

5. Proofs of correctness

An operator (j>is monotonie if A£ implies A4' £ if/i is not a mono-
tonic operator but rather surprisingly is. To simplify our proofs we
introduce several monotonie operators. Define </>; by the program

A ^ :— AuvAit
for k :/ + 1 step 1 until do : u

and 4>'i analogously using "i-1 step -1 until 1". Both are obviously
monotonie. # and <P' are defined from and <£• in a similar way to Y
and Y'.Although Ys <Pisevident, the following result is not.

Theorem 5. Y Y(and Y' <!>').

Proof. Consider applied to an arbitrary matrix A and suppose it
selects the index k with AikA0. (If no index is selected then of course
A11"1 A4"1). We verify that:
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(i) A<f>i <i>i+1 ••• ^/c-i a ^1+1 </>k~1 and similarly for xfii in
place of (ßi

and (ii) A*1 <t>k A*1 <l>k

(i) is immediate since (fit and i/q do not affect any rows with indices between

i and k.

To verify (ii) we check that A^i(^k ^ A*1 since for j > k

{A*'*«)j, 2 X^jÄ^AjAv
— AjAtU

We also note that cfik cfik cfik

The proof of the Theorem is by induction on i from n to 1 for the equation

This is trivial for i n, while for / 1 it is the result to be proved. Suppose
the equation true for i + 1, and then for an arbitrary A:

+ i "'K j*i<f>i+1 ~.<f>n
by inductive hypothesis

Either A*1 Aand we are done or 3k > i which is selected in i/q on A.
Then

j^i <t>i+ i _ ^4^1 + 1 ••• <l>k-1 *ïi 4k by (i)
A(f>i+ i ^k-i *k by (ii)

==A*f"*k by (i)

The induction step now follows easily.

In the proof of the Main Theorem below we need the following results.

Lemma 1.

(i) <P<P $ (and — <P')

(ii) A00' 2 ÄA v A (iand A0 0 ^ ÄA v A)

(iii) A00/0 2 ÄÄA v ÄA v A

Proof.

(i) We may verify directly that for i ^j^cfijcfii ç (fit (fij
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Then

$<P <j>x <{>n(f)l ...<i)n

— 010102^2 ••• 0A by repeated application of above inclusion

— <P CZ (pep

(ii) Consider an arbitrary contribution to ÄA.

If k >ithenAJk AtJ £ A1'' £ A0

else AikAij £ A^>£A0'

(iii) A00'0 (A00)0'0 £ (ÄA v A)0'0

£ (ÄA v Ä) (IA v A)

£ AAA v A

Lemma 2. If B£AAA u AA u A and V is defined by

uu Bu if i <j
1 >J

then B UvB£AAVA

Proof.

IfJ < k, Au Ajks5,.fc £ C7,k

if7 î®® k,AuAjk£Ajj Aji Au Ajk£Atj Bjk £ Ty Ujk

Thus £ A (U vU). Similarly AA £ ({7 u E7)

Also AA£ BandAA £ B, so that £ ([/ u

From these inclusions we may derive

Ä+ A+£ (F u Ï7)+

Ä+ A+ £
A+ A+£ UVB

A+ A+£ UVB

and finally

(I + A+)+ £ BUVB
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We shall consider weak paths which start with a backward edge, end
with a forward edge and contain only those edges < i,j > with r < i <j
for some threshold r. Hence we define the operators 7rr for 1 < r < « + 1.

JT71' X(U(r))vX uX
where U(r\j X{j if r < / <j

0 otherwise

Lemma 3.

nr c (t>r7tr+i for 1

Proof. Let X be an arbitrary matrix, with t/(r) defined as above and

Y U(r) u t/0 Let Z 0r.
YJrY;rYrk^X7jXrvrXrk^ZJk

and likewise

Yjr Yr: Yrk cz ZJk

Similarly to deal with the ends of the paths,

Xf* Yrk^Z^ if r < k

YJrYrr*Xr*cZj. if r < i

Xr* 7rr* Xr* c Zr*Z,.* in any case

These inequalities show that internal edges of a path which visit vertex r
can be replaced, so that Zn*+1 is sufficient.

The effort is now behind us and the Main Theorem comes easily.

Theorem 6.

(i) Q WWW
(ii) V RW'WW

(Hi) w SWW

Proof The only matters requiring detailed proof are that the righthand
transforms include Q. Let A be an arbitrary matrix.



For (i), define B A «F¥"«F

Therefore

2 AAA u AA u A

Aq c

by Theorem 5

by Lemma 1 (iii)

from Lemma 2

For (ii) and (iii), let B — As

AR*"F (I \j A)0'0 by Theorem 5

3 (J u Ä) (J u X) by Lemma 1 (ii)

B

Also in this case, AQ ^ B 1

In view of Theorem 5 and Lemma 1 (i) we have only to show now that

ß*i ^ b00' to complete the proof. Using Lemma 3 repeatedly:

But

therefore

71J <= ^1^2 — 4*l4*2^3 — ••• — ^^11 + 1

x*n+1 llulc X00'

7üi ^ <P$(pr $><$'

6. Conclusion

The close examination of a simple, practical matrix algorithm has led us

to novel theoretical questions and to potentially useful generalizations of
the algorithm. The principal contribution of this work to the programmer
is the introduction of several very fast closure algorithms and the establishment

of their correctness. The problems we have encountered in the theory
of relations and closure operations have whetted our curiosity and suggest
that further investigation may be rewarding.
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