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Zexxxvxxxx € M5, xy and so M, g is infinite, since for "the infinite
graph shown below:
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(JK)™ adds all edges < i,j > with i,j <2m
and (JK)™ J adds all edges < i,j > with i,j <<2m + 1
Therefore J, JK, JKJ, ... are all distinct.

4. (GENERALIZED ALGORITHM FOR POWER-GROUP ALGEBRAS

To elucidate the correctness of the algorithm and to encompass some
more general applications we need to generalize from the {0, 1} Boolean
algebra to a slightly richer structure. The power-group algebra P (G) 1s a
structure defined from an arbitrary group G. The elements of P (G) are the
subsets of G; the operations we require are union (U), complex product:

ab = {gh|gea, heb} for a,b<G
and converse:
a={g7"|gea}

P (G) is a monoid with respect to product with identity 2 = {identity}.
As before we shall be considering matrices over the structure, with matrix
product and union defined in the obvious way from product and union in
P (G), and matrix converse defined by

(Z)ij = Aji

The key properties of power-group algebras which are needed are given
below

LEMMA. Let a, b be elements and A, B matrices

<

(1) =a;j=A
(i) ab = ba; AB = BA

(iii) ifa # @ then aa =2 ); AAA 2 A
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Proof. We prove only (iii). The first part is immediate and has the
consequence that aaa 2 a for all a. For the second part

We observe that the {0, 1} Boolean algebra is the power-group algebra
corresppnding to the trivial one-element group. Other groups we shall use
are < Z,, + > and < R, + >, the integers modulo k£ and the reals.

The operators *, +, V and W are defined just as before for matrices
and elements. In the Boolean case we had the trivial results

a=a" =a” =a

and
a* =a”¥ =1

In the general case we must augment the algorithm a little. Suppose for
example there are edges labelled a, b from i to j and k respectively, and a
self-loop at i labelled c. Then the label of the edge from j to k£ must eventually
receive a term corresponding to the indirect paths from j to k i.e.

a(aa vc ve vbb)*b
The generalized form of ; is:
Ap: = AV A

k:=1i+ 1step1 until (k=nor 4,,# &)
if Ay, # @ then Ay 1 = Ay U Ay A

The programs for y;, ¥ and ¥’ are analogous. They simplify to the pro-
grams of section 2 in the Boolean case.

The question of generalization could have been tackled axiomatically.
Suppose i < j < k and 4;;, Ay, # . If row i were sent directly to row k
we would have A, A;., whereas via j we get

;fi.j—Aik . Z;Ai* = ‘4—ikAij Z—;Ai*

and we seem to require 4;; A;; > A for correctness. A power-group algebra
seems the only structure of possible interest with this property.

Suppose that A is a matrix over P (G) and we compute 4A®¢ = 47,
AY, ;isthe set of elements of G which are the product of labels from a (weak)
path from i to j in the graph corresponding to 4. Each diagonal element
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AY,; is a subgroup of G and two diagonal elements in the same (weak)
component are conjugate since we may show:

14 Vv
AVii.gzg.Aij=Aij forany gEA ij

In particular if all circuits on non-empty edges correspond to the group
identity then in 4" each entry has at most one element. For example given
a matrix 4 over < R, + > we determine from 4" for each component of
the graph whether there are (weak) circuits with non-zero sums. If all
circuits sum to zero then the graph is a “potential” graph, i.e. there is a
function pot : R — {vertices} such that each edge < u,v > has the value
(pot (v) — pot (v)). Similarly over < Z,, + > we may determine whether
each weak circuit of a directed graph has zero sum where forward and
backward edges are accounted +1 and —1 respectively. Naturally we may
find it convenient in some cases to hold only a homomorphic image of
P (G) for the computations e.g.

h(g) =@
h({g}) =g

h(a) = o when |a|>1.

5. PROOFS OF CORRECTNESS

An operator ¢ is monotonic if A < Bimplies 4% = B®. , is not a mono-
tonic operator but rather surprisingly ¥ is. To simplify our proofs we
introduce several monotonic operators. Define ¢; by the program

A= A A,
fork: =i+ 1stepl until ndo A : = A U 4, A;u
and ¢; analogously using “/ — 1 step —1 until 1”. Both are obviously

monotonic. @ and &’ are defined from ¢; and ¢; in a similar way to ¥
and ¥’. Although ¥ < ¢ is evident, the following result is not.

THEOREM 5. ¥ = @ (and ¥' = @').

Proof. Consider y; applied to an arbitrary matrix 4 and suppose it
- selects the index k with 4, # @. (If no index is selected then of course
- AV = 4% We verify that:
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