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Zxxxx V xxxx $M{J,K) and so M{is infinite, since for the infinite

graph shown below :

1 2 3 4 5 6
• 4 • y -é • »• 4 • • • •

a
(JK)m adds all edges < ij > with ij < 2m

and (/X)m J adds all edges < i,j > with ij < 2m + 1

Therefore /, JK, JKJ, are all distinct.

4. Generalized algorithm for power-group algebras

To elucidate the correctness of the algorithm and to encompass some

more general applications we need to generalize from the {0, 1} Boolean

algebra to a slightly richer structure. The power-group algebra P (G) is a

structure defined from an arbitrary group G. The elements of P (G) are the
subsets of G; the operations we require are union (u), complex product :

ab {gh\g ea, heb } for a,b^G
and converse:

4 {0_1 I# en }

P (G) is a monoid with respect to product with identity X {identityG}.
As before we shall be considering matrices over the structure, with matrix
product and union defined in the obvious way from product and union in
P (G), and matrix converse defined by

(Ä)ij Ajt

The key properties of power-group algebras which are needed are given
below

Lemma. Let a, b be elements and A, B matrices

(i) a a ; A A

(ii) ab ba ; AB BA

(in) if a # 0 t/zen aa ^ X ; AÄA ^ A
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Proof. We prove only (iii). The first part is immediate and has the

consequence that aaa 2 a for all a. For the second part

(AAA)u3 Au Äß AuAu A^j y 3 A

We observe that the {0, 1} Boolean algebra is the power-group algebra
corresppnding to the trivial one-element group. Other groups we shall use

are < Zt, + > and < R, + >, the integers modulo k and the reals.

The operators *, +, V and W are defined just as before for matrices
and elements. In the Boolean case we had the trivial results

~ + wa — a a a

and
a* av — 1

In the general case we must augment the algorithm a little. Suppose for
example there are edges labelled a, b from i to j and k respectively, and a

self-loop at i labelled c. Then the label of the edge fromj to k must eventually
receive a term corresponding to the indirect paths from j to k i.e.

a{aa v c v c v bb)* b

The generalized form of i/q is:

At* : AuvAi*

k : i + 1 step 1 until (k n or Aik ^ 0)
if Aik 7^ 0 then Ak* Ak* Aik Ai*

The programs for W and W are analogous. They simplify to the

programs of section 2 in the Boolean case.

The question of generalization could have been tackled axiomatically.
Suppose i < j < k and Ai}, Aik ^ 0. If row i were sent directly to row k

we would have Afk A t*, whereas via j we get

Aij Aik. Aij Ai* Afk Aij Aij A-t*

and we seem to require Atj Âfj > X for correctness. A power-group algebra

seems the only structure of possible interest with this property.
Suppose that A is a matrix over P (G) and we compute ARQ Av.

AVij is the set of elements of G which are the product of labels from a (weak)

path from i to j in the graph corresponding to A. Each diagonal element
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Avn is a subgroup of G and two diagonal elements in the same (weak)

component are conjugate since we may show :

Avu .gg Av]}AviJ for any g e

In particular if all circuits on non-empty edges correspond to the group
identity then in Av each entry has at most one element. For example given
a matrix A over < R, + > we determine from Av for each component of
the graph whether there are (weak) circuits with non-zero sums. If all
circuits sum to zero then the graph is a "potential" graph, i.e. there is a

function pot : R -> {vertices} such that each edge < u, v > has the value

(pot (v) - pot (w)). Similarly over < Zk9 + > we may determine whether
each weak circuit of a directed graph has zero sum where forward and
backward edges are accounted +1 and — 1 respectively. Naturally we may
find it convenient in some cases to hold only a homomorphic image of
P (G) for the computations e.g.

h (0) — 0

h({9}) 9

h (a) — co when | a | > 1

5. Proofs of correctness

An operator (j>is monotonie if A£ implies A4' £ if/i is not a mono-
tonic operator but rather surprisingly is. To simplify our proofs we
introduce several monotonie operators. Define </>; by the program

A ^ :— AuvAit
for k :/ + 1 step 1 until do : u

and 4>'i analogously using "i-1 step -1 until 1". Both are obviously
monotonie. # and <P' are defined from and <£• in a similar way to Y
and Y'.Although Ys <Pisevident, the following result is not.

Theorem 5. Y Y(and Y' <!>').

Proof. Consider applied to an arbitrary matrix A and suppose it
selects the index k with AikA0. (If no index is selected then of course
A11"1 A4"1). We verify that:
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