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Quad (N)) la sous-catégorie formée des modules bilinéaires symétriques
(M, @, N) (resp. antisymétriques, alternés, quadratiques) non dégénérés
dont le module sous-jacent M est projectif de type fini. Le formalisme de la
K-théorie algébrique ([1], Ch. 1) est adapté a ces situations. Ainsi a ’aide
de la somme orthogonale on obtient des groupes abéliens qu’on note
KYmbl (N), K (N), Kg" (N) K€ (N): ce sont les groupes universels
(ou de Groethendieck) pour les applications f de I’ensemble des classes
d’isomorphisme d’objets de la catégorie correspondante dans les groupes
abéliens G tels que f (M L M) = f (M) + f(M’) dans G.

Soit alors K, (R) le groupe de Groethendieck de la catégorie P (R)
des R-modules projectifs de type fini et notons [M] la classe dans ce groupe
du module M. L’application f qui au module bilinéaire M associe [M]
(foncteur oubli) induit d’aprés le caractére universel des groupes définis
ci-dessus des homomorphismes de groupes abéliens K, (F) : Kg (N)
— K, (R) (le point . remplagant Symbil, As, Alt ou Q). Inversement, I’iso-
morphisme naturel /# (P, N) L h(P,, N) =~ h(P,®P,,N) pour P, et P,
dans P (R) induit des homomorphismes K, (H) : K, (R) = Kg (N).
Dans le cas quadratique, on appelle groupe de Witt des types de formes
quadratiques de N, le conoyau de K& (H).

Dans les autres cas, on peut définir deux groupes de Witt selon que
on considére comme triviaux les modules hyperboliques ou plus généra-
lement les modules métaboliques. Mais, en fait, les deux groupes obtenus
sont canoniquement isomorphes.

Ces groupes de Groethendieck et de Witt commutent a ’extension
des scalaires du fait de la propriété analogue de la somme orthogonale.
I en est de méme pour les homomorphismes K (F) et K (H).

Fixons la notation suivante: si (M, @, N) (resp. (M, g, N)) est un
module bilinéaire (resp. quadratique), on notera [(M, ¢)] ou [p] (resp.
[(M, ¢)] ou [g]) son image dans K, (N). On abrégera K3™! en KSB,

2. STRUCTURES MULTIPLICATIVES

Le groupe de Groethendieck K, (R) est muni d’une structure d’anneau
(commutatif et unitaire) par le produit tensoriel. Nous allons voir que
pour les modules bilinéaires et quadratiques nous avons une situation
analogue qui enrichit les groupes K, (V) de structures supplémentaires.




74

2.1. Produit tensoriel de modules bilinéaires

Soient (M, ¢, N) et (M’', ¢’, N') deux modules bilinéaires respecti-
vement ¢ et &'-symétriques. L’application u : M X M’ X M X M’ dans
N ® N’ définie par u(x,p, x,py) = ¢ (x,y) ® @' (x',y’) est linéaire
par rapport a chaque argument et induit une application bilinéaire sur le
R-module M ® M’ a valeurs dans N ® N’ qui est ee¢’-symétrique. Ce
nouveau module bilinéaire not¢ (M OM’', eo®¢’, NQN’') est appelé
produit tensoriel de (M, @, N)et (M’, ¢’, N'); ce produit est manifestement
commutatif et associatif a isomorphisme prés; il est aussi, comme le produit
tensoriel de modules vis-a-vis de la somme directe, distributif vis-a-vis
de la somme orthogonale de modules bilinéaires.

Si eg' = —1, 'un des deux modules est antisymétrique, par exemple
(M, ¢). Supposons-le alterné; alors (M @M', p®¢@’) est alterné: en effet
il est clair que ¢ ® ¢’ est nul sur les couples (x;®@x;, x;®x;) ou x; € M, x;
e M'. Comme ¢ ® ¢’ est antisymétrique, on en déduit que ¢ ® ¢’ (z, z)
=Opourtoutz =Y x; ® x; de M @ M".

2.2. Cas d’un module quadratique et d’un module bilinéaire

Supposons maintenant donnés un module quadratique (M, g, N)
et un module bilinéaire symétrigue (M', ¢’, N'). On a alors la

PrOPOSITION 2.2.1. Il existe un module quadratique unique (M QM’, g
=q®¢’, NQN') vérifiant les deux conditions suivantes :

D §x®X) = q((x) ® ¢ (x, x)
() ¢q = ¢, ® ¢".
La proposition est due a C. H. Sah ([8], [9]). L’unicité est claire car (i)

n

et (ii) définissent § = ¢ ® @’ sur toute somme z = ) x; ® X; comme
i=1

j@= Y q@¢ x®x)+ Y}  ¢,®¢ (x®x;,x;Qx)).

= l=i_j=n
L’existence se montre aisément si M et M’ sont libres et, dans le cas général,
on présente M et M’ comme quotients de modules libres.

Si maintenant (M, g, N) et (M',q’, N’) sont deux modules quadra-
tiques, on peut définir sur M ® M’ deux applications quadratiques a
valeurs dans N ® N’ a I'aide de (g, ¢,,) d’'une part, (¢,, q') d’autre part.
On a alors ¢a® ¢o¢ = @, @ @y = QPo,q €t pour tout couple (x, x')
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de Mx M, ¢® ¢, (x®x)=qg® ® ¢, (x,x)=2gx)®q ()
=0, (5, x)® ¢ (xX) = ¢, ® q' (x®x'), si bien que les deux modules
quadratiques coincident.

Les propriétés signalées en 2.1 (associativité, commutativité et distri-
butivité par rapport a la somme orthogonale) sont encore valables. On
peut encore noter que le produit tensoriel commute & I’extension des
scalaires.

Supposons maintenant les modules N et N’ dans Pic (R); on a alors la

PROPOSITION 2.2.2. Le produit tensoriel de deux modules bilinéaires
&,-symétriques non dégénérés (resp. d’un module quadratique et d’un module
bilinéaire symétrigue non dégénérés) est un module bilinéaire (resp. quadra-
tique) non dégénéré.

En effet, si s,:M — Hom (M, N) et s, : M — Hom(M’, N')
sont des isomorphismes de R-modules, alors s, ,-, qui s’obtient en com-
posant s, ® s, : M ® M’ — Hom (M, N) ® Hom (M’, N') avec liso-
morphisme naturel entre ce dernier module et Hom (M @M, NQN')
est un isomorphisme.

2.3. Structures d’anneaux et de modules

La proposition 2.2.2 et les résultats de 2.1 montrent que le produit
tensoriel induit sur K3® (R) une structure d’anneau commutatif: comme
tout élément de ce groupe est différence d’éléments [¢], il suffit de définir
[p1] X [@,2] = [¢; @ ¢,]. Cet anneau est unitaire d’élément unité {1 >:
R X R — R défini par { 1) (r,s) = rs.

Comme le produit tensoriel d’une forme symétrique (resp. anti-
symétrique, alternée, quadratique) a valeurs dans N € Pic (R) par une forme
symétrique a valeurs dans R est une forme de méme nature que la premiére
et a valeurs dans N, les propriétés d’associativité et de distributivité vues
en 2.1 et 2.2 montrent que les groupes K (N) sont de facon naturelle des
K3F (R)-modules unitaires.

De plus le produit tensoriel induit, pour N et N’ dans Pic (R), une
application naturelle de K3°(N) x Kg? (N’) dans K5E (N®N') qui
est biadditive et K;° (R)-linéaire par rapport a chaque variable. On

obtient ainsi un homomorphisme naturel y® y.: K5° (N) ® KS5(R) K38 (N
0

— K3? (N ® N’). On peut énoncer des résultats analogues pour les autres

groupes K, (N) qui sont des K3® (R)-modules. Retenons les deux cas
particuliers suivants:




— 76 —

Si @ et ¢ sont deux formes alternées a valeurs scalaires, ¢ ® ¢’ est
une forme symétrique. On a ici une application

oF (R)-bilinéaire symétrique de K5" (R) x K5" (R) dans K38 (R).

Dans le cas quadratique, I’application ¢ — ¢, induit une application
K3P (R)-linéaire de K (N) dans K58 (N) qu’on notera b, (bilinéarisée).
Si N et N’ sont dans Pic (R), on a d’aprés 2.2 les formules suivantes dans
KE(N®N') et K3B(NQN'):

(D ag®q" =by(9) ®q =qg®by(q)
(2) by (a®q') = by (9) @ by (q).
2.4. Remarques

(1) On peut encore définir un autre anneau commutatif et unitaire

associ¢ aux modules bilinéaires symétriques: a savoir K (R)
= @ K3®(N), le produit étant défini a 1’aide des applications

Ne P~1c (R)
v®y de 2.3. Cest une K3° (R)-algébre commutative graduée par
le groupe Pic (R). Les sommes directes K, (R) = ® Ko (N)

Ne Pic (R)

ol . désigne As, Alt ou Q sont des K5° (R) modules gradués sur
Pic (R).

(i) Si N e Pic (R), N ® N* s’identifie canoniquement a R d’ott un homo-
morphisme naturel K3 (N) ® KSE(R) KB (N*) - K58 (R). On a
0

aussi un isomorphisme naturel entre K3° (R) et K5 (N®N) par
(M, ¢, R) > (M®N, ¢ ® lygy, N ®N).

(iii) Si 2 est inversible dans R, by est un isomorphisme de K3 (R)-modules;
la structure d’anneau de K3° (R) se transporte & K& (R). Dans le cas
général, la structure multiplicative de K& (R) ne présente d’intérét
que du fait des relations (1) et (2) de 2.3.

(iv) En ce qui concerne le foncteur oubli, K, (F):K3® (R) = K, (R)
est un homomorphisme d’anneaux. Tout ce qui a été vu en 2.2, 2.3
et 2.4 se comporte bien par extension des scalaires.

(v) Le produit tensoriel d’un espace hyperbolique par un autre module
(symétrique, quadratique ou alterné) est un espace hyperbolique,
ce qui montre que le sous-groupe engendré par les espaces hyper-
boliques est un idéal (ou un sous K3? (R)-module suivant les cas).
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2.5. Formes alternées et formes quadratiques

Les deux remarques de 2.3 nous conduisent aux définitions suivantes:
Ly, (R) et Ly (R) sont deux anneaux commutatifs Z/(2)-gradués dont
les composantes homogenes de degré O sont K3% (R) pour chacun d’eux
et les composantes de degré 1 respectivement L,y (R); = K& (R) et
Ly (R); = K& (R). Le produit dans Ly (R) est défini a I'aide de I'appli-
cation de KA (R) x K53"(R) dans K3° (R) vue en 2.3. Celui de Ly (R)
est défini par la formule:

(b,q)(b',q") = (bb"+ 9, .0y, b.q" +b".9).

Lintérét de ces deux anneaux est qu’ils sont le cadre naturel des opéra-
tions A et ¢ sur les formes bilinéaires symétriques, alternées et quadratiques
que nous verrons en 3.

Si 2 est inversible dans R, la bilinéarisation est un isomorphisme de
K sur K3® et Ly = K3” (R) [x] avec x® = 1. Les anneaux L,y et Ly
jouissent des propriétés fonctorielles usuelles vis-a-vis de ’extension des
scalaires.

3. PUISSANCES EXTERIEURES ET PUISSANCES SYMETRIQUES

Les puissances extérieures sont un outil important de I’algebre lin€aire.
Nous souhaitons montrer ici que dans le cadre des modules bilinéaires ou
quadratiques des constructions semblables peuvent &tre faites. Cela per-
mettra de munir les anneaux rencontrés dans la partie précédente d’opé-
rations A et o.

3.1. Puissances extérieures de modules bilinéaires

Soit (M, ¢, N) un R-module bilinéaire; si N = A, la définition des
puissances extérieures de ¢ est bien connue ([3], [8]). Dans le cas général,
définissons I’application de M x M X ... x M, 2p fois, dans I’algébre
symétrique S (N) du R-module N qui a (x4, ..., Xps V1» +--» Vp) associe le
déterminant de la matrice des ¢ (x;, y;), ¢ (x; y))eN = S (N), sous
R-module de S (N). C’est une application multilinéaire par rapport aux x,
et y; et alternée vis-a-vis des x; d’un coté et des y; de 'autre. On obtient
ainsi un module bilinéaire (A?M, APp, SPN), la puissance extérieure pme
de (M, ¢, N). Si ¢ est e-symétrique, APp est e’-symétrique. Si @ est non
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