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fori: = 1step 1 until n do

begink : =i+ 1step 1 until (k=nor 4,=1)
1f Aik = ] then Ak* . = Ak* \Y4 Ai*
else form : = 1 step 1 until £ — 1 do

ifA;,, = 1then 4, : = A
end

It 1s not obvious that this algorithm has such a low time complexity, since
it appears that the row copying step may be performed O (n?*) times. How-
ever when the correctness of the algorithm is understood it becomes clear
that each row is copied into at most once and so the total number of these
operations is indeed O (n).

We can give an informal proof using Theorem 1 that this algorithm is
correct. We may think of A4 as representing an undirected graph on the
index set {1, ..., n}. Since the algorithm causes no interaction between rows
or columns corresponding to different components of the graph, it is
sufficient to regard each component separately. We need only prove the
correctness for a graph with a single component. It is plain that the nth row
is the same after either the original algorithm or after **’. By Theorem 1,
this must be all 1’s provided that » > 1. But the copying operation of the
original algorithm must have copied 1’s throughout the entire matrix. This
1s correct.

We shall consider only our refined algorithm in further detail since it
has natural generalizations which the old algorithm does not possess.

3. BASIC CLOSURES

A matrix, 4, regarded as a relation, is transitive if A > 42, The transitive
closure of 4, AT, is the least transitive matrix, X, containing 4, and we may

write
AT = uX . X >4 v X?

(AT is often denoted 4™). Similarly for the reflexive closure and symmetric
closure

~

AR = uX . X
AS = uX . X

V Vv

A v
A v

A<l
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We have also the reflexive-and-transitive closure
A¥ = uX . X >A vI v X,

Indeed for any formal polynomial P over X, X, using product and disjunction
with I as the identity, since 4 v P (X, X) is monotonic in X, we have a
unique minimal fixpoint (uX . X >4 A P). Our interest in skew-closure
is illuminated by the following result:

THEOREM 2.
AC =,uX.X>Av)_(X.

Proof. Firstly, A2 satisfies the inclusion.
AVvA2A? = A v (A v AV ADH*A)(A Vv AA v AH*A)
<AvAMA vV AH*A = A°

We note that A = 4, AB = BA and A* = A* -
Secondly, A2 is minimal. Suppose 42 > K = (uX . X>AvXX) and

let m be the smallest integer such that Q,, = A4 v A (AvA)™ 4 not <
K. Obviously 4 <K, but also

AAANAD"A< ) AA . A@A v A" " 1A v AA". A

o=r<m

<V oa. V o
r<m r<m
<K.K by minimality of m
< K by fixpoint property of K
This contradiction proves the Theorem. O

There are just two other monomials in X, X of degree at most two,
namely XX and XX. The first yields a closure, Q', which is merely dual to
skew-closure. The second yields a rather curious closure, 7', which can be

- represented by the set of products over 4, A, defined by the strings

{we {4, A}* | number of A’s = 1+ number of A’s mod 3} — A4 (44)*

Since the set of products defining 7’ is a regular set, this closure is com-

- putable using some fixed number of products, transitive closures, dis-
- Junctions and transposes. Therefore its computational complexity (like
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that of product [2]) is no greater than that of T, to within a constant factor.
However we have been unable to show the converse.

Open Problem 1. Is there an O (n*) matrix-based algorithm for the
T'-closure?

3. THE QUADRATIC MONOID

To satisfy our curiosity we investigated the monoid generated by the
composition of closures corresponding to polynomials of degree at most
two. For any set of transformations E let M be the monoid generated by
compositions of elements of E. For any polynomial P (X, X), define
Zp:A - (uX.X>AvP(X,X))
and then

I, ={Z, Ideg(P) <r}.

THEOREM 3. My = M (g,s,0,0,1, 1,y and the monoid is finite.

Proof. The equality follows from the finiteness since

J— m
Zove, =\ (Zr, - Z1,)
€M (zp,zp,y  if this is finite.

M (r,s, 0,0, 1,1 18 examined explicitly below and is found to contain
exactly fifty elements. ]

We write A for the monoid identity given by 4* = 4 and [Z, ..., Z]
for the closure V (Zyv...vZ)". Together with the obvious idempotencies

of closures we have the following sufficient defining relations.
WS, 0,0, T, T']
= Q0" =00 =Q0T"' =Q'T' =50 = 8SQ" = ST = ST’
VIIR,S,0,0',T, T'] = WR = RQ = RQ’' =RT"'
QT =[Q,T] Q'T =[Q',T]
T'Q = T'TQ =T'QT T'Q =T'TQ" =T'Q'T
TT' =T'T *¥RT = TR RS = SR

The closures in the monoid are
|4 : AV = (4 v A)*
w : AY = (4 v A
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