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2. THE BOOLEAN ALGORITHM

We begin our presentation by giving the skew-closure algorithm in the
simple form which is adequate for the Boolean case. Correctness results
given here are easy corollaries of the more general theorem of a later section.
The algorithm proceeds in an alternating series of passes: four passes in
general, two in a special case.

A is an n X n Boolean matrix, and 4;. denotes the ith row of 4. “ v’
represents disjunction and when applied to rows or matrices denotes a
Boolean disjunction applied coordinate-wise. A partial order is defined by
A>Biff A=A v B.

b

The forward pass. For each row in turn, the leftmost non-zero entry to
the right of the diagonal is sought. If found, the current row is “or”-ed into
the row indexed by this entry’s position. In an informal Algol this appears
as:

fori: = 1step 1l until » — 1 do y;
where V; is

begink : = i+ 1step 1 until (k=n or 4,, #0)
if Aik =L 0 then Ak* . = Ak* A\ Ai*

end

The result is denoted by A*. The backward pass, resulting in A*" is the
same except that the iteration statements are

fori: = nstep —1 until 2 do
and
k:=1i— 1step —1 until (k=1 ...

respectively. Thus it is the dual operation obtained by reversing the ordering
of the rows and columns. One of these passes requires at most O (n?)
operations on a random access machine. If a row operation on the matrix
can be performed in a single step then only O (n) of these are required and
the time may be dominated by the searches for the first non-zero element
after the diagonal in each row. This still uses O (n*) operations in a naive
implementation but a more imaginative use of vector operations reduces
this to at most O (n log n). In [1], we show a Turing machine implementation
of the algorithm in time O (n* log n).
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We denote the transpose of A4 by A and the reflexive-and-transitive
closure of A4 by A*. I'is the unit matrix. The skew-closure, AL, of A is given
by

A2 = A v AA v A*A

Further justification for this odd-looking operation will be given later, but
for the present we have:

THEOREM 1.

(l) AQ — A‘I"I”‘I"I’"
(ii) if A is reflexive, ie. A >1, then A% = (AvA)* = AT Y

(ili) if A is symmetric, i.e. A = A, then
A2 = (AvA)T = 477,

Proof. Each result is a special case of the more general results in
Theorem 6. [

An example where A¥F% %« A¥"" is given by
0010
0000
4=10100
1000

Both the (1, 2) and (2, 1) entries become 1 at the fourth pass.

If it appears to the reader that the choice of earliest (latest) non-zero
entry in the forward (backward) pass algorithm is unnecessarily restrictive,
she/he will be interested to know that with the modification to the forward
pass of using

fork: = nstep —1 until (k=i+1 ..

i.e. the rightmost non-zero to the right of the diagonal, and the corresponding
change to the backward pass, the algorithm fails. Fortuitously, the same
example as above serves. The (2, 1) entry remains zero after any number of
passes.

The final pass of the algorithm can be regarded as copying the rows
which have been built up, back into previous rows. The closure algorithm
for reflexive symmetric matrices, in the form in which it was originally
introduced to us, makes this explicit. It uses a single combined pass
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fori: = 1step 1 until n do

begink : =i+ 1step 1 until (k=nor 4,=1)
1f Aik = ] then Ak* . = Ak* \Y4 Ai*
else form : = 1 step 1 until £ — 1 do

ifA;,, = 1then 4, : = A
end

It 1s not obvious that this algorithm has such a low time complexity, since
it appears that the row copying step may be performed O (n?*) times. How-
ever when the correctness of the algorithm is understood it becomes clear
that each row is copied into at most once and so the total number of these
operations is indeed O (n).

We can give an informal proof using Theorem 1 that this algorithm is
correct. We may think of A4 as representing an undirected graph on the
index set {1, ..., n}. Since the algorithm causes no interaction between rows
or columns corresponding to different components of the graph, it is
sufficient to regard each component separately. We need only prove the
correctness for a graph with a single component. It is plain that the nth row
is the same after either the original algorithm or after **’. By Theorem 1,
this must be all 1’s provided that » > 1. But the copying operation of the
original algorithm must have copied 1’s throughout the entire matrix. This
1s correct.

We shall consider only our refined algorithm in further detail since it
has natural generalizations which the old algorithm does not possess.

3. BASIC CLOSURES

A matrix, 4, regarded as a relation, is transitive if A > 42, The transitive
closure of 4, AT, is the least transitive matrix, X, containing 4, and we may

write
AT = uX . X >4 v X?

(AT is often denoted 4™). Similarly for the reflexive closure and symmetric
closure

~

AR = uX . X
AS = uX . X

V Vv

A v
A v

A<l
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