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THE FAST SKEW-CLOSURE ALGORITHM ')

by M. J. Fischer and M. S. Paterson

Abstract. A subtle matrix algorithm is explored and generalized.

Originally used for transitive closures of symmetric Boolean matrices, this

O (n2) algorithm computes a closure operation which is of interest for
asymmetric and non-Boolean matrices too. The correctness of a generalized

form of the algorithm is shown. The monoid generated by "skew-closure"
and some of the more usual closures is investigated.

1. Introduction

The algorithm which forms the principal theme of this paper is of
interest for several reasons. It is of mysterious ancestry; we have been

unable to trace any published source which refers to it. It came to us by
oral tradition at least seven years ago, when it impressed us with its speed
and by the non-triviality of establishing its correctness. Further, whereas it
seemed intended to be applied to Boolean matrices of symmetric and
reflexive relations, the result of an application to more general matrices
invited analysis.

The operation achieved by the algorithm we have termed "skew-closure".
This closure is related to the more customary symmetric-and-transitive
closure, and belongs to a very natural class of closure operations which we
elaborate a little. In the interests of finding which matrix operations can be
done equally rapidly, the monoid generated by several of these simple
closures is treated in some detail. While this is finite, we later display a pair
of slightly more complicated closures which together yield an infinite
monoid.

b Presented at the Symposium über Logik und Algorithmik in honour of Ernst
Specker, Zürich, February 1980.
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2. The Boolean algorithm

We begin our presentation by giving the skew-closure algorithm in the
simple form which is adequate for the Boolean case. Correctness results

given here are easy corollaries of the more general theorem of a later section.
The algorithm proceeds in an alternating series of passes: four passes in
general, two in a special case.

A is an n x n Boolean matrix, and denotes the zth row of A. " v"
represents disjunction and when applied to rows or matrices denotes a
Boolean disjunction applied coordinate-wise. A partial order is defined by

A^BiRA^AvB.
The forward pass. For each row in turn, the leftmost non-zero entry to

the right of the diagonal is sought. If found, the current row is "or"-ed into
the row indexed by this entry's position. In an informal Algol this appears
as:

for z : 1 step 1 until n — 1 do i/q

where i/q is

begin k : z + 1 step 1 until (k n or Aik ^0)
if A 0 then Ak# : ^ A i*

end

The result is denoted by Av. The backward pass, resulting in A?' is the

same except that the iteration statements are

for i : n step — 1 until 2 do

and
k : i — 1 step -1 until (k= 1

respectively. Thus it is the dual operation obtained by reversing the ordering
of the rows and columns. One of these passes requires at most O (n2)

operations on a random access machine. If a row operation on the matrix
can be performed in a single step then only O (n) of these are required and

the time may be dominated by the searches for the first non-zero element

after the diagonal in each row. This still uses O (n2) operations in a naive

implementation but a more imaginative use of vector operations reduces

this to at most O (n log n). In [1], we show a Turing machine implementation
of the algorithm in time O (n2 log ri).
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We denote the transpose of Aby Aand the reflexive-and-transitive

closure of Aby A*./ is the unit matrix. The skew-closure, AQ, of A is given

by
Aq A v A (A v A)* A

Further justification for this odd-looking operation will be given later, but

for the present we have :

Theorem 1.

(i) Aq A*m,
(ii) if A is reflexive, i.e. Af*I, then AQ (ÄvA)* Av

(iii) if A is symmetric, i.e. AA,then
AQ (ÄvA)+A"1"1".

Proof. Each result is a special case of the more general results in
Theorem 6.

An example where ÄFV"P A A"' is given by

/0 0 1 0\
0 0 0 0 Iioioo I '

\1 0 0 0/
Both the (1, 2) and (2, 1) entries become 1 at the fourth pass.

If it appears to the reader that the choice of earliest (latest) non-zero

entry in the forward (backward) pass algorithm is unnecessarily restrictive,
she/he will be interested to know that with the modification to the forward

pass of using
for k : n step — 1 until (k—i+ 1

i.e. the rightmost non-zero to the right of the diagonal, and the corresponding
change to the backward pass, the algorithm fails. Fortuitously, the same

example as above serves. The (2, 1) entry remains zero after any number of
passes.

The final pass of the algorithm can be regarded as copying the rows
which have been built up, back into previous rows. The closure algorithm
for reflexive symmetric matrices, in the form in which it was originally
introduced to us, makes this explicit. It uses a single combined pass
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for i : 1 step 1 until n do

begin k : i + 1 step 1 until (k n or Aik= 1)

if Aik 1 then Ak* : Ak* v At*

else for m : 1 step 1 until i — 1 do

if Aim 1 then Am* : At*
end

It is not obvious that this algorithm has such a low time complexity, since

it appears that the row copying step may be performed O (n2) times. However

when the correctness of the algorithm is understood it becomes clear
that each row is copied into at most once and so the total number of these

operations is indeed O (n).
We can give an informal proof using Theorem 1 that this algorithm is

correct. We may think of A as representing an undirected graph on the
index set {1, n). Since the algorithm causes no interaction between rows
or columns corresponding to different components of the graph, it is

sufficient to regard each component separately. We need only prove the
correctness for a graph with a single component. It is plain that the wth row
is the same after either the original algorithm or after By Theorem 1,

this must be all l's provided that n > 1. But the copying operation of the

original algorithm must have copied l's throughout the entire matrix. This
is correct.

We shall consider only our refined algorithm in further detail since it
has natural generalizations which the old algorithm does not possess.

3. Basic closures

A matrix, A, regarded as a relation, is transitive if A > A2. The transitive
closure of A, AT, is the least transitive matrix, X, containing A, and we may
write

AT iiX .X >A v X2

(AT is often denoted^"1"). Similarly for the reflexive closure and symmetric
closure

Ar juX.X >A v I
As tiX .X >A v X



— 349

We have also the reflexive-and-transitive closure

A* nX X > A v I v X2

Indeed for any formal polynomial Pover X, using product and disjunction

with I as the identity, since Av P(X,is monotonie in X, we have a

unique minimal fixpoint (jiX. X W A a P). Our interest in skew-closure

is illuminated by the following result:

Theorem 2.

Aq iiX X > A v XX

Proof. Firstly, AQ satisfies the inclusion.

A v A^ AQA v (ÄvÄ(Av Ä)* A)(A v 1(1 v A)* A)

< T vl(ï v T)* A AQ

We note that AA,AB— BA and A* A*
^

Secondly, AQ is minimal. Suppose (i^X. X^>A v XX) and

let m be the smallest integer such that v v A)'" A not <
K. Obviously A < K, but also

Ä{Ä a A)m A < V ÄAr.Ä(Ä v A)"1'1"v
o < m.

< V Qr-VQr
r < m r < m

< K K by minimality of m

< K by fixpoint property of K

This contradiction proves the Theorem.

There are just two other monomials in X, X of degree at most two,
namely XX and XX. The first yields a closure, Qf, which is merely dual to
skew-closure. The second yields a rather curious closure, T', which can be

represented by the set of products over A, Ä, defined by the strings

{w e {A, Ä)* I number of Äs 1 + number of Ä's mod 3} —\ A (ÄA) +

Since the set of products defining T' is a regular set, this closure is

computable using some fixed number of products, transitive closures,
disjunctions and transposes. Therefore its computational complexity (like
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that of product [2]) is no greater than that of T, to within a constant factor.
However we have been unable to show the converse.

Open Problem 1. Is there an O (n2) matrix-based algorithm for the
T'-closure?

3. The quadratic monoid

To satisfy our curiosity we investigated the monoid generated by the

composition of closures corresponding to polynomials of degree at most
two. For any set of transformations E let ME be the monoid generated by
compositions of elements of E. For any polynomial P (X, X), define

ZP : A -> (fiX.X>A vP (X,X))
and then

nr {ZP Ideg(P) <r}.
Theorem 3. Mn^ M{R,s,q,q\t, t>} and the monoid is finite.

Proof. The equality follows from the finiteness since

Zpivp2 V (Zp1 Zpf
e M {zPpzp2} if this is finite.

M{r,s,q,q',t,t'} is examined explicitly below and is found to contain
exactly fifty elements.

We write A for the monoid identity given by Aa A and [Zu Zk]
for the closure \J (Zx v... v Zk)m. Together with the obvious idempotencies

m

of closures we have the following sufficient defining relations.

Wä^[S,Q,Q',T,T']
QQ' Q'Q QT' Q'TSQ SQ' ST ST'

V^[R, S, Q, Q', T, T'] WR RQRQ'

QT [Q, T] Q'T [Q',T]T'Q T'TQ T'QT T'Q' T'TQ'
TT' TT *^RT TRRS SR

The closures in the monoid are

V

w
Av (A v A)*
Aw —{AvA)+
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[Q, T] : A{Q>T}=Âv.A

[Q', T] : A[Q''T] A. Av

[T, T'~\ : AiT>T'i A v AV.(AA v ÄÄ).

*,[R9S],R,S,Q,Q',T,T' and yl.

The monoid can be counted after expressing its elements in a canonical
form by the following rules.

(i) Using RS SR, RT TR, RQ RQ' RT' QQ'R, we can

bring any occurrence of R to the end of the product

(ii) Using SQ SQ' ST ST' — QQ', we can assume that any S

occurs at the end of the rest of the product

(iii) QT' Q'T' — T'QQ' and TT' T'T allow us to bring any T' to
the front of the remainder.

(iv) The elements generated by Q, Q', T are found to be

A,Q,Q',T,TQ,TQ',QT,Q'T,W

Prefixing these with T' yields only 4 new elements

T', T'Q, T'Q', T'T
(v) The 50 elements of the monoid are given by

{A, Q, Q',T, T', TQ, TQ',QT,Q'T,T'Q, T'Q', T'T} {A, R, S, SR}
u { W, V }

These elements are distinguishable by their effect on the graph

The "fast" monoid generated by the O (n2) operations R, S, Q, Q' has
only 14 elements

{ A, Q, Q'}.{A,R,S,SR}u {

Of computational interest are the relations

RQVandQQ'
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which yield efficient ways to compute these common closures. Note that in
some contexts the Q' closure may be more rapid to compute than S.

We illustrate some of the proofs for the results above.

Theorem 4.

Cancellation Lemma. For all A, AÄA > A.

Proof. (AÄA)U > AijÄßAij A^A^A^ > Atj

(i) RQ V

(Ü) QQ> w
(iii) [Q, T] QT and AQT Av A

Proof.

(i) If we show that RQ > S the result follows easily. But

ARQ >(/ v A)Q >A v ÄI A v Ä As

(ii) Again the only non-trivial part is that QQ' > S

Aqq' >(A v ÄÄ)Q' >A v ÄA.Ä >AS

by the Cancellation Lemma.

(iii) By inspection, A[Q,T] < Av A

However,

Av A A* ÂAVA v A* .A <(AQ)T < A[Q'T]

One of the harder results to prove is that TT' T'T. We leave it as an
exercise for the reader.

We have found that each mapping in il2 is defined by a regular set over

{A,Ä}, however in 1J3 there are « non-regular » mappings, e.g. ZxxX v xxx
The finiteness of Mn^ does not persist for large r. We show by the

example below that Mn^ is infinite.

Open Problem 2. Is Mn finite?

Example. Let J Zxxxx, K ZxxXX
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Zxxxx V xxxx $M{J,K) and so M{is infinite, since for the infinite

graph shown below :

1 2 3 4 5 6
• 4 • y -é • »• 4 • • • •

a
(JK)m adds all edges < ij > with ij < 2m

and (/X)m J adds all edges < i,j > with ij < 2m + 1

Therefore /, JK, JKJ, are all distinct.

4. Generalized algorithm for power-group algebras

To elucidate the correctness of the algorithm and to encompass some

more general applications we need to generalize from the {0, 1} Boolean

algebra to a slightly richer structure. The power-group algebra P (G) is a

structure defined from an arbitrary group G. The elements of P (G) are the
subsets of G; the operations we require are union (u), complex product :

ab {gh\g ea, heb } for a,b^G
and converse:

4 {0_1 I# en }

P (G) is a monoid with respect to product with identity X {identityG}.
As before we shall be considering matrices over the structure, with matrix
product and union defined in the obvious way from product and union in
P (G), and matrix converse defined by

(Ä)ij Ajt

The key properties of power-group algebras which are needed are given
below

Lemma. Let a, b be elements and A, B matrices

(i) a a ; A A

(ii) ab ba ; AB BA

(in) if a # 0 t/zen aa ^ X ; AÄA ^ A
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Proof. We prove only (iii). The first part is immediate and has the

consequence that aaa 2 a for all a. For the second part

(AAA)u3 Au Äß AuAu A^j y 3 A

We observe that the {0, 1} Boolean algebra is the power-group algebra
corresppnding to the trivial one-element group. Other groups we shall use

are < Zt, + > and < R, + >, the integers modulo k and the reals.

The operators *, +, V and W are defined just as before for matrices
and elements. In the Boolean case we had the trivial results

~ + wa — a a a

and
a* av — 1

In the general case we must augment the algorithm a little. Suppose for
example there are edges labelled a, b from i to j and k respectively, and a

self-loop at i labelled c. Then the label of the edge fromj to k must eventually
receive a term corresponding to the indirect paths from j to k i.e.

a{aa v c v c v bb)* b

The generalized form of i/q is:

At* : AuvAi*

k : i + 1 step 1 until (k n or Aik ^ 0)
if Aik 7^ 0 then Ak* Ak* Aik Ai*

The programs for W and W are analogous. They simplify to the

programs of section 2 in the Boolean case.

The question of generalization could have been tackled axiomatically.
Suppose i < j < k and Ai}, Aik ^ 0. If row i were sent directly to row k

we would have Afk A t*, whereas via j we get

Aij Aik. Aij Ai* Afk Aij Aij A-t*

and we seem to require Atj Âfj > X for correctness. A power-group algebra

seems the only structure of possible interest with this property.
Suppose that A is a matrix over P (G) and we compute ARQ Av.

AVij is the set of elements of G which are the product of labels from a (weak)

path from i to j in the graph corresponding to A. Each diagonal element
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Avn is a subgroup of G and two diagonal elements in the same (weak)

component are conjugate since we may show :

Avu .gg Av]}AviJ for any g e

In particular if all circuits on non-empty edges correspond to the group
identity then in Av each entry has at most one element. For example given
a matrix A over < R, + > we determine from Av for each component of
the graph whether there are (weak) circuits with non-zero sums. If all
circuits sum to zero then the graph is a "potential" graph, i.e. there is a

function pot : R -> {vertices} such that each edge < u, v > has the value

(pot (v) - pot (w)). Similarly over < Zk9 + > we may determine whether
each weak circuit of a directed graph has zero sum where forward and
backward edges are accounted +1 and — 1 respectively. Naturally we may
find it convenient in some cases to hold only a homomorphic image of
P (G) for the computations e.g.

h (0) — 0

h({9}) 9

h (a) — co when | a | > 1

5. Proofs of correctness

An operator (j>is monotonie if A£ implies A4' £ if/i is not a mono-
tonic operator but rather surprisingly is. To simplify our proofs we
introduce several monotonie operators. Define </>; by the program

A ^ :— AuvAit
for k :/ + 1 step 1 until do : u

and 4>'i analogously using "i-1 step -1 until 1". Both are obviously
monotonie. # and <P' are defined from and <£• in a similar way to Y
and Y'.Although Ys <Pisevident, the following result is not.

Theorem 5. Y Y(and Y' <!>').

Proof. Consider applied to an arbitrary matrix A and suppose it
selects the index k with AikA0. (If no index is selected then of course
A11"1 A4"1). We verify that:



— 356 —

(i) A<f>i <i>i+1 ••• ^/c-i a ^1+1 </>k~1 and similarly for xfii in
place of (ßi

and (ii) A*1 <t>k A*1 <l>k

(i) is immediate since (fit and i/q do not affect any rows with indices between

i and k.

To verify (ii) we check that A^i(^k ^ A*1 since for j > k

{A*'*«)j, 2 X^jÄ^AjAv
— AjAtU

We also note that cfik cfik cfik

The proof of the Theorem is by induction on i from n to 1 for the equation

This is trivial for i n, while for / 1 it is the result to be proved. Suppose
the equation true for i + 1, and then for an arbitrary A:

+ i "'K j*i<f>i+1 ~.<f>n
by inductive hypothesis

Either A*1 Aand we are done or 3k > i which is selected in i/q on A.
Then

j^i <t>i+ i _ ^4^1 + 1 ••• <l>k-1 *ïi 4k by (i)
A(f>i+ i ^k-i *k by (ii)

==A*f"*k by (i)

The induction step now follows easily.

In the proof of the Main Theorem below we need the following results.

Lemma 1.

(i) <P<P $ (and — <P')

(ii) A00' 2 ÄA v A (iand A0 0 ^ ÄA v A)

(iii) A00/0 2 ÄÄA v ÄA v A

Proof.

(i) We may verify directly that for i ^j^cfijcfii ç (fit (fij
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Then

$<P <j>x <{>n(f)l ...<i)n

— 010102^2 ••• 0A by repeated application of above inclusion

— <P CZ (pep

(ii) Consider an arbitrary contribution to ÄA.

If k >ithenAJk AtJ £ A1'' £ A0

else AikAij £ A^>£A0'

(iii) A00'0 (A00)0'0 £ (ÄA v A)0'0

£ (ÄA v Ä) (IA v A)

£ AAA v A

Lemma 2. If B£AAA u AA u A and V is defined by

uu Bu if i <j
1 >J

then B UvB£AAVA

Proof.

IfJ < k, Au Ajks5,.fc £ C7,k

if7 î®® k,AuAjk£Ajj Aji Au Ajk£Atj Bjk £ Ty Ujk

Thus £ A (U vU). Similarly AA £ ({7 u E7)

Also AA£ BandAA £ B, so that £ ([/ u

From these inclusions we may derive

Ä+ A+£ (F u Ï7)+

Ä+ A+ £
A+ A+£ UVB

A+ A+£ UVB

and finally

(I + A+)+ £ BUVB
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We shall consider weak paths which start with a backward edge, end
with a forward edge and contain only those edges < i,j > with r < i <j
for some threshold r. Hence we define the operators 7rr for 1 < r < « + 1.

JT71' X(U(r))vX uX
where U(r\j X{j if r < / <j

0 otherwise

Lemma 3.

nr c (t>r7tr+i for 1

Proof. Let X be an arbitrary matrix, with t/(r) defined as above and

Y U(r) u t/0 Let Z 0r.
YJrY;rYrk^X7jXrvrXrk^ZJk

and likewise

Yjr Yr: Yrk cz ZJk

Similarly to deal with the ends of the paths,

Xf* Yrk^Z^ if r < k

YJrYrr*Xr*cZj. if r < i

Xr* 7rr* Xr* c Zr*Z,.* in any case

These inequalities show that internal edges of a path which visit vertex r
can be replaced, so that Zn*+1 is sufficient.

The effort is now behind us and the Main Theorem comes easily.

Theorem 6.

(i) Q WWW
(ii) V RW'WW

(Hi) w SWW

Proof The only matters requiring detailed proof are that the righthand
transforms include Q. Let A be an arbitrary matrix.



For (i), define B A «F¥"«F

Therefore

2 AAA u AA u A

Aq c

by Theorem 5

by Lemma 1 (iii)

from Lemma 2

For (ii) and (iii), let B — As

AR*"F (I \j A)0'0 by Theorem 5

3 (J u Ä) (J u X) by Lemma 1 (ii)

B

Also in this case, AQ ^ B 1

In view of Theorem 5 and Lemma 1 (i) we have only to show now that

ß*i ^ b00' to complete the proof. Using Lemma 3 repeatedly:

But

therefore

71J <= ^1^2 — 4*l4*2^3 — ••• — ^^11 + 1

x*n+1 llulc X00'

7üi ^ <P$(pr $><$'

6. Conclusion

The close examination of a simple, practical matrix algorithm has led us

to novel theoretical questions and to potentially useful generalizations of
the algorithm. The principal contribution of this work to the programmer
is the introduction of several very fast closure algorithms and the establishment

of their correctness. The problems we have encountered in the theory
of relations and closure operations have whetted our curiosity and suggest
that further investigation may be rewarding.

Acknowledgment. We wish to thank Richard Ladner for discussions

concerning this paper and its relation to security problems in protection
systems.
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