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4. APPLICATIONS

Let us start by deriving some results which could also be obtained
from the theorems in [3, 4, 6] mentioned in the introduction. Abreviating
X = Xiyes Xy ¥ = Vise Vs consider Q= F(x,y), K=F(x),
E = F(y). Then E and K are linearly disjoint over F (see e.g. [1], p. 203).

Taking k = 1,e; = i, 1 <i <n, we see that any computation of

n
f(yy) =x,9y + ... F x,y7 in (Q, EUK) requires ri—l M|D that count

even if we disregard a M/D by an element g € F. Thus any preprocessing
using algebraic functions oy, ... in x and algebraic functions f, ... in y,

n
cannot save more than 5 M| D.

Taking k = n, we get a similar result for x; y; + ... + x, y,.
In [6] Winograd has considered the computation of the product Ax

where A=(a;;); i, 18 an m X n matrix and x is the column vector
l=j=n

x = (xy, ..., X,). Computing Ax means, of course, computing the forms
aj1 X1 + .. + diy X, 1 <@ <m. In our notations assume that a;; € E,
X1, --» X, € K. Denote the column vectors of 4 by vy, ..., v,, thus v; e E™.

We say that dim m pm (V4 ...,0,) = r, if r is the largest integer such
that for some subset {iy, ..., i,} = {1, ..., n}

g0, + .. +g,0, €eF" g;eF implies g; = 0,1 <i <r.

Winograd [6] assumes that dim_m ) pm (V4, ...,v,) = 1, and that F < C—
the field of complex numbers. Furthermore K is a field such that F (x4, ..., x,)
c K and K is embeddable in a field of continuous (except for isolated
points) functions f (xi, ..., x,) into C which vanish only at isolated
points; similarly F(yq, ..., V,,) S E, and E is embeddable in a field of
functions g (v4, ..., y,,) With the above properties. Under these conditions,

r
an algorithm for Ax requires at least I—E—I M| D that count.

In purely algebraic terms we can state and prove the following theorem.

THEOREM 2. Let A = (a;;) be an m X n matrix with a;;€ E and let
X1, ..., X, €K be algebraically independent over F. Denote the columns of
A by vy, ..,v,. If E and K are linearly disjoint over F, and if
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dimgm pm (@1, .-r U,) = 1, then any algorithm n in (Q, EUK) which compu-

r
tes Ax has at least I—E_I M|D that count.

Proof. Using vector notation, computing 4Ax means computing all co-
ordinates of the sum

(8) xl‘Z)l + 'y + Xn‘b’n = W.

We may assume that » = n. Otherwise let without loss of generality
4, ...,0,, F < n, be vectors which are independent mod F™ over F. Then
forr <j<nm

‘Z)J = gjlvl T+ e M gjrvr + uj’ g.”EF’ uJEFm.
Hence, from (8),

w = (xl +gr+1,1xr+1+°"+gn1xn)v1 + + xr+1ur+1 + + xnun

- Zl’l)l + coe + err +u,

where u € K™. Now the computation in (@, EUK) of u costs nothing, and
the z,, ..., z, € K are algebraically independent over F. So we have the
conditions of the theorem with r = n.

Assume from now on that v, ..., v, are independent mod F™ over F.
Let e, = 1, eq, ..., e, be elements in E which are linearly independent over
F, such that every a;; (the i-th component of v;), 1 <i <m, 1 <j <n,isa
linear combination of ey, ..., e, with coefficients in F. Each v; can be split
v; = u; + w;, where u; € F™, and every coordinate of w; is a linear com-
bination of just ey, ..., e, with coefficients in F. Thus w = x; w; + ...
+ x,w, + u, where ueK™, and computing x;w; + ..+ x,w, in
(Q, EUK) takes as many M/D that count as does computing w.

Because vy, ..., v, are linearly independent mod F™ over F, we have that
Wi, ..., W, are linearly independent over F. Consider the sum Z, w; + ...

+ Z,w,, where Z, ..., Z, are variables ranging over Q. Writing the i-th co-
p
ordinate of w; as a linear combination X g;; e; and rearranging, we get
J=1

(9) Zywy + ... +Z,w, =[L, (Z)ey+...+Li,(Z)e, |1 —iem
where L;; (Z) = 2 g Z;.
k=1

We claim that among the L;; (Z),1 <i <<m, 1 <j <p, there are n
. forms which are linearly independent. By this we mean that the rows of
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coeflicients of these n forms are linearly independent over F. Otherwise
there are 4,4, ..., h, € F, not all 0, so that the substitution Z; = Ay, ..., Z,
= h, yields L;;(h) =0,1 <i<m,1<j<p. By (99 we now have
hywy + ...+ h,w, =0, contradicting the linear independence of
Wy, ..., W, OVer F.

Let L;;; (Z), ..., L; ;. (Z) be such a system of n independent forms.
Then d; ;; = Lyj, (X1, woos Xp)s oo d; ;. = L; ; (x4, ..., X,) are algebraically
independent over F. This is because x4, ..., x, is the unique solution of the
regular system of linear equations

Lieje(z 1> ...,Zn) = di
Thus, finally

ele?

(10) XyWy + oo+ x,w, = [diyes +.oo+die, ]l —iam

ip-p

with d;; € K, and the degree of transcendence of the d;; over F is n. So, by
n
Theorem 1, at least I_ —2—_| M|[D that count are needed to compute (10), and

hence to compute (8) in (2, EUK).

For the next application let x, ..., x, be algebraically independent
over F and put Q = F (x4, ..,x,),E = F,K = F(xy, ..., x,). Then, by
an argument like the one used in the first example after the statement of
Theorem 1, E and K are linearly disjoint over F. Therefore Theorem 1
implies that for any w € E of degree at least n + 1 over F the computation of

(11) X, + ... + ©"x,

n
in (Q, EUK) requires at least I— E_l M|[D. Note that now we have a result

about substitution of a specific algebraic number in a polynomial. We
allow any rational preprocessing of the coefficients and any algebraic pre-
processing of the argument .

Next we show that no finite number of algebraic functions of x4, ..., x,
simplifies the computation of (11) for all algebraic w of degree n + 1 over
the rationals Q. Since any particular preprocessing of x4, ..., X, by algebraic
functions involve just a finite number of such functions, we essentially
conclude that algebraic preprocessing of x4, ..., X, in (11), as well as the

(w now depends on the chosen preprocessing of the x; of course), does not

reduce the number of M/D that count below I—g—| . Specifically
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THEOREM 3. Let
G=Q(xyg..,%),2=G,ay,..,a,€2, K= G(ay .., a,)
and F = Q. There exists an element o € Q of degree n + 1 over Q such
that any computation n for (11) in (Q, QUK) must have at least rg_l M|D
that count.

Proof. Define F;, = Q n K. We shall prove slightly more than stated,
namely that for a suitable w € Q, computation of (11) in (2, QUK) requires

at least rg_] M/ D that count even if we disregard M/D by a g € Fy. The

diagram of fields is

Qx5 vvns Xp)
ur W
Q K
\N U
F, =QnK
ul
F =Q

Notice that Q = F, and F; n K = F,. This implies that Q and K are
linearly disjoint over F,. Namely let ey, ..., ¢, € F; be independent over F.
Choose a primitive element e € F,, of degree m over F say, such that
ey, ..., e, € Fy (e), and let f(X) e Fy [X] be the minimal polynomial of e
over F;. Assume f = f; f, in K[X]. Since the coefficients of f,, f, are
algebraic over F, and since F; n K = F, we obtain f}, f, € F, [X]. There-
fore f is irreducible in K [X] and hence the elements 1, e, ..., e" ! are
linearly independent over K. By linear algebra it follows that ey, ..., e, are
linearly independent over K.

The degree [F;:Q] is at most [K : Q (x4, ..., x,)] hence finite. This
implies that for any » there exists an algebraic number w € Q of degree
n + 1 over Q which retains the degree » + 1 over F,. For this w the state-
ment in the theorem holds true as a consequence of Theorem 1.
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