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3. PROOF OF THEOREM

Put e,= 1 and let (e;);-, (kx some cardinal) be an extension of
€ps €1, .., €, 10 an F-base of E. By linear disjointness, (e;);<, 1s also a
K-base of the K-algebra K [E]. Since for i,j <xe;e; = Xg;; e for

k

suitable g;;, € F we have:

(5) If (Zae;) (Zbje;) = X ¢, e, where a;, b;, c,eK

(and the sums are finite of course) then

= ), abgyeF[{a}u{b;}],
l’J
Any element r € KE, the quotient field of K [E], can be written in the form
2 ae;
r =
X be;

+ &

where a;, b;, ¢ € K, not all b; = 0. Such a representation of » will be called
a canonical representation, and the a;’s and b;’s are the coeflicients of the
given representation. Note that the canonical representation is not unique.

LEMMA. If rq, ..., r, is the sequence of results of some computation in
(Q, EUK) using s M|D that count then there are 2s elements o4, ..., 4, € K
such that each r, # u,1 <v <n, has a canonical representation all of
whose coefficients are in F oy, ..., 005 ).

The proof is by induction on n. The case n = 0 being trivial assume
n > 0.

If r, e E U K then obviously r, has a canonical representation with co-
efficients in F, so the claim follows from the induction hypothesis. The same
applies if r, = u.

Next assume that 7, € Q is the result of a non-counting operation, i.e.
r, = r, + r, for some u,v < norr, is the result of a M/D where one of
the factors or the denominator is a ge F. Let us consider the case
r, = r, +r, the other cases are similar. Choose ay,...,a,;€ K and
canonical representations
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according to the induction hypothesis. Then, by (5), the coefficients of the
canonical representation
AB" + A'B

= -+ c+c’
T BB’ (e+c)

also lie in F [0y, ..., 054l .
Finally let r, = r, - r, (r,=r,/r, resp.), r, € Q. Then, again by (5), the
coefficients of the representation

(A+cB)(A"+c'B") (A +cB) B’ )
T rn ; esp
" BB’ (A’ +cB’)B

lie in Floty, ..., %yq— 2, ¢, ¢'] where ay, ..., 0,5, € K are provided by in-
duction hypothesis. Putting a,,_; = ¢, a,; = ¢’ completes the induction.

p

Proof of Theorem I. Assume that m computes the elements X d;; e;,
ji=1

1 <i<m, in (Q, EUK) with s counting M/D. By the Lemma there exist
oy, ..., %55 € K and canonical representations

Z ik €

p
(6) Y dje = +¢, 1 <i<m,
=1

with coefficients ay, by, € Floy, ..., o). Now fix i. Multiplying (6) by the
denominator gives

(7) (2 bigey) (—cieo+) dise) = Zkl Ak € -
q J

Multiplying out the left hand side and comparing the coefficients of each
e, on both sides (recall that e, ey, ..., are independent over K) we obtain,
by using (5), a system & of linear equatlons for the d;;’s and c¢; whose co-
efficients are F-linear forms of the b,’s. Now the equat1on (7) clearly

determines the element —c¢; ¢, + X d;; e; uniquely. Since the e; are K-linear
J

independent it follows that & has a unique solution, and hence dj,,

c;€ F(ay, ..., %y5), by linear algebra. Since D has degree of transcendence ¢

| - Nl
- over F'we obtain 25 > t,1.e. 5 >

Remark. The method for handling divisions was proposed by Volker
- Strassen and we kindly thank him for this.
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