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3. Proof of Theorem

Put e0= 1 and let (e^)i<K (k some cardinal) be an extension of
e09 el9 ep to an F-base of E. By linear disjointness, {e^)i<K is also a

iCbase of the AT-algebra K[E], Since for i9j < Ketej lgijkek for

Any element r e KE, the quotient field of K [E], can be written in the form

where ai9 bj9 c e K, not all bj 0. Such a representation of r will be called

a canonical representation, and the a/s and b/s are the coefficients of the

given representation. Note that the canonical representation is not unique.

Lemma. If rl9 rn is the sequence of results of some computation in

(Q, E\jK) using s M/D that count then there are 2s elements al5 oc2s e K
such that each rv =£ u, 1 < v < n, has a canonical representation all of
whose coefficients are in F [<xl9 a2J.

The proof is by induction on n. The case n 0 being trivial assume

n > 0.

If rneE v K then obviously rn has a canonical representation with
coefficients in F, so the claim follows from the induction hypothesis. The same

applies if rn u.

Next assume that rne Q is the result of a non-counting operation, i.e.

rn — r^ ± rv for some p, v < n or rn is the result of a MjD where one of
the factors or the denominator is a g e F. Let us consider the case

rn rn + rv> other cases are similar. Choose al5..., a2sejK and

canonical representations

k

suitable gijk e F we have:

(5) If (Za^;) (Zbjej) Ickwherebp ckeK
(and the sums are finite of course) then

ck= E aibjgijkeF[{al

r

r,V
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according to the induction hypothesis. Then, by (5), the coefficients of the

canonical representation

AB'+ A'B
BB'

+(C + C>

also lie in F [a1? a2s].

Finally let r„ rß rv (rn rjrv resp.), e Q. Then, again by (5), the

coefficients of the representation

CA 4- cB) (A' + c'B') (A + cB) B'
r z 44 1 y _— resp.

BB' V (A'+cB')B

lie in F [al9 a2s_ 2, c, c'] where au gc2s-2 e k are provided by
induction hypothesis. Putting a2s-i c> a2S c' completes the induction.

p

Proof of Theorem 1. Assume that % computes the elements I du ep
j=i

1 < i < m, in (Q, EvK) with s counting M/D. By the Lemma there exist

al9 a2s eK and canonical representations

Yj aik ek

(6) X duej— 1 < < m
j=iL

a

with coefficients aik9 biqe F [ocl9 a2J. Now fix z. Multiplying (6) by the
denominator gives

(7) (Z bk ei) ~ cieo + Z du ej) Z
a j k

Multiplying out the left hand side and comparing the coefficients of each

ek on both sides (recall that e0, el9 are independent over K) we obtain,
by using (5), a system of linear equations for the df s and ct whose
coefficients are iMinear forms of the biq s. Now the equation (7) clearly
determines the element - ct e0 + I dtj e} uniquely. Since the ej are K-linear

j
independent it follows that SP has a unique solution, and hence dip
ct e F(ocl9..., a2s), by linear algebra. Since D has degree of transcendence t

rtiover F we obtain 2s > t, i.e. s > 1 - l.
2

Remark. The method for handling divisions was proposed by Volker
Strassen and we kindly thank him for this.
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