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proof are expressed in purely algebraic terms. In section 4 we apply
Theorem 1 to obtain the known results on lower bounds, as well as new
results which do not fall within the scope of previous methods.

7. BASIC CONCEPTS AND THE MAIN THEOREM

Let Q be a field and S a subset of its elements. Following [5, 6], a
(straight-line) algorithm or computation in (&, S) is a sequence 7:
7 (1), ..., m (/) where for each 1 <k </ we have 7 (k) € S, or for some
i,j <k n) = (+,i,j) or (—,5ij)or (7)) or (/, i, )

With 7 we associate the sequence 7 (1), ..., ¥ (/) of the results of the
computation n. The r (k) are all elements of QU {u}. Define r (1)
= 7 (1) € S. Inductively, if r (1), ...,r (k—1) are already defined we set
rk) = n(k) if n(k)eS, rk) =r@) +r()if nk) = (+,1,)), etc. By
convention, /0 = u + r = u-r = .. = uforre QU {uj.

We say that n computes the elements ay, ..., a,€ Q if there exist
1 <i; <I,1 <j<m, so that for the results of # we have r (i;)) = a,,
1 <j<m.

In the sequel we shall be interested in fields F = Q and two intermediate
fields E, K. Thus

Q

U W
(3) E K
\N U
F

The following concept comes from the theory of fields and from algebraic
geometry, see [1, 2].

Definition. The fields E and K are linearly disjoint over F if any
ey, ..., &, € E which are linearly independent over F are also linearly inde-
pendent over K, i.e. 2 a;e; = 0,aq;eK, only if a; = 0,1 <i <m.

As the definition stands, the fields £ and K play different roles. It is
however easy to see that the above definition implies the analogous state-
ment with the roles of E and K interchanged. (See e.g. [1].)

Our theorem will be about computations # in (Q, EUK). The fact that
we permit using any « € E U K at no computational cost captures, in an
algebraic form, the idea of preprocessing.
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We shall strengthen the contents of our lower bound results by dis-
regarding those M/D used in a computation = where one of the factors or
the denominator is a g € F. An M/ D-operation n (k) = (o, i, j) counts if
r (k) # u and either ¢ = - and r (i), r (j) ¢ F, or 0 = /[ and r(j) ¢ F.

Given ey, ..., e, € E, we say that they are independent mod F over F if
2g;e,eFandg;eF,1 <i<p,impliesg;, = 0,1 <i <p.

With these concepts we can state our main result.

THEOREM 1. Assume that E and K in (3) are linearly disjoint over F.
Let di;e K, 1 <i<<m,1 <j<p, besuch that the degree of transcendence
of D={d;|1<i<m,1<j<p} over Fis t. Let ey, ..,e,eE be
linearly independent mod F over F. If m is any algorithm in (Q, EUK)
which computes all the m elements

dije; + ... +dy,e,

(4)

dmlel '§" cese + d e

mp-p

t
then m has at least I_E_l M|D that count.

The proof will be given in section 3. Let us consider some preliminary
examples.

In (3), let @ = F(xq, ..., X, V1, ---» V) Where x4, ..., y, are algebraically
independent over F, and let £ = F(y¢, ..., ¥,), K = F(xy, ..., x,). Then E
and K are linearly disjoint over F. This can be seen as follows: Assume
2 r;(x)s; (y) = 0is a nontrivial dependence relation, r; (x) e K, s; (y) € E.
Multiplying by some r(x)e F[xq,...,X,] we may assume that all
r;(x)e Flxy, ..., x,. Let m be a monomial in x, ..., x, occurring in at
least one r;(x) and let g, F be the coefficient of m in r;(x). Then
2 g;s;(p) is a nontrival dependence relation with coefficients from F.

So the conditions of Theorem 1 hold for the inner product (x, y)
=x,y, + ..+ x,»y, with t = n (and m = 1). Hence no algorithm =
computing (x, y), even when allowed to use at no cost any rational functions

n
r(xq, .., x,)ek,s(yy, ..., , € Ecan have fewer than rg—l M| D that count.

Much stronger results on (x, ) will be given later, but we mention this
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fact now as an illustration of the concepts and because Winograd’s pre-
processing is of the kind covered by this remark.

The need for the condition that the e; are linearly independent mod F
is clear. Otherwise if, say, m = 1 and ¢; = g;e; + h;, g9, h e F,2 <i <p
then

diey + ... +dye, = (dy+g.d,+...+g,d,)e + hydy + .. + h,d,.

Thus there is only one multiplication that counts.

It is not sufficient to require in Theorem 1 that E n K = F, even though
this might seem to prevent a computation in (@2, FUK) from “mixing”
without cost elements from E with elements from K: Let Q be the quotient
field of the integral domain F [xy, X5, X3, V1, V2, V3l/(X1 Y1 T X2Y2 T X3Y3),
and put E = F(x;,X,,x3) S QK =F(y,y2,53) S Q. In Q, the
elements x,, x,, x5 are still algebraically independent over F, and similarly
for y(,y,, y5. Also En K = F. So the conditions of Theorem 1, with
E n K = F instead of linear disjointness, hold for x; y; + x, ¥, + x5 y;3
= 0. But the computation of this sum requires no operation instead of
2 M|D.

One might think that the condition of linear disjointness on £ and K
in Theorem 1 is already so strong that we could replace the degree of
transcendence ¢ by just the linear dimension. Thus if ey, ..., e,€ K are
linearly independent mod F over F and similarly for dy, ..., d, €K, and E

and K are linearly disjoint over F, does X d, e; require at least |— g_l M|/D

that count. The next example refutes this conjecture.

Denoting the algebraic closure of a field H by H, let Q = G (x, y)
where x, y are algebraically independent over G. Let n > 1 and put
F=G("y),E=F(x),K = F(p). Clearly the F-base 1, x, ..., x"~ ! of
E remains linearly independent over K. Hence, by linear algebra, E and K
are linearly disjoint over F. Consider the element

n..n

1—x"y

-1 = x x2 2 n—1 n—l.
1—xy y+ Xyt 4+ o+ x0Ty

Obviously this element can be computed in (Q, EUK) with 2 M/D.
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