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proof are expressed in purely algebraic terms. In section 4 we apply

Theorem 1 to obtain the known results on lower bounds, as well as new

results which do not fall within the scope of previous methods.

2. Basic concepts and the Main Theorem

Let Q be a field and S a subset of its elements. Following [5, 6], a

(straight-line) algorithm or computation in (Q, S) is a sequence n :

je (1), 7i (/) where for each 1 < k < / we have n (k) e S, or for some

ij < k, n (k) + Uj) or (-, Uj) or (•, ij) or (/, ij).
With 7i we associate the sequence r (1), r (/) of the results of the

computation n. The r (k) are all elements of Q u {u}. Define r (1)

- n(l)eS. Inductively, if r (1), r (k~ 1) are already defined we set

r (k) % (k) if 7i (k) e S, r (k) r (i) + r (J) if n (k) + etc. By

convention, r/0 u + r u • r w for r e Q kj {u}.
We say that 7r computes the elements ame Q if there exist

1 </,- </, 1 <y < m, so that for the results of n we have r (ij) ap
1 <7 < m.

In the sequel we shall be interested in fields F Q and two intermediate

fields F, K. Thus
Q

0/ \\i

(3) E K

0/

F

The following concept comes from the theory of fields and from algebraic

geometry, see [1, 2].

Definition. The fields E and K are linearly disjoint over F if any
eu em eE which are linearly independent over F are also linearly
independent over K, i.e. I aiei 0, at e K, only if at 0, 1 < i < m.

As the definition stands, the fields E and K play different roles. It is

however easy to see that the above definition implies the analogous statement

with the roles of E and K interchanged. (See e.g. [1].)
Our theorem will be about computations n in (Ü, EuK). The fact that

we permit using any ae^ulatno computational cost captures, in an
algebraic form, the idea of preprocessing.
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We shall strengthen the contents of our lower bound results by
disregarding those M/Z> used in a computation n where one of the factors or
the denominator is a g e F. An M/D-operation n (k) (a, ij) counts if
r (k) A u and either cr • and r (z), r (/) <£ F, or a / and r (y) ^ /\

Given ei5 g Is, we say that they are independent mod F over F if
I gi e{ g F and gt g F, 1 </</?, implies 0, 1 < i </?.

With these concepts we can state our main result.

Theorem 1. Assume that E and K in (3) are linearly disjoint over F.
Let dtj g K, 1 < i < m, 1 < y < p, be such that the degree of transcendence

of D {du I 1 <z <m, 1 <y </?} over F is t. Let eu epeE be

linearly independent mod F over F. If % is any algorithm in (Q, EkjK)
which computes all the m elements

dxle1 + + dlpep

(4)

dmiei + + dmpep

mthen it has at least 1 - 1 M]D that count.

The proof will be given in section 3. Let us consider some preliminary
examples.

In (3), let Q F(xx, xn, yu yn) where xu yn are algebraically
independent over F, and let E F (yl5 yn), K F(xx, xn). Then E
and K are linearly disjoint over F. This can be seen as follows: Assume

1 rt (x) st (y) 0 is a nontrivial dependence relation, rt (.x) 6 K, st (y) g E.

Multiplying by some r (x) e F [xu xn\ we may assume that all

rt (x) g F [xx, xj\. Let m be a monomial in xl5 xn occurring in at
least one rt(x) and let gteF be the coefficient of m in rt(xf Then

I gi Si (y) is a nontrival dependence relation with coefficients from F.

So the conditions of Theorem 1 hold for the inner product (x, y)
xi Li + ••• + xnyn with t n (and m 1). Hence no algorithm n

computing (x, y), even when allowed to use at no cost any rational functions
T n~]

r (xl5 x„) eK, s (yl9 yn) e E can have fewer than 1 - 1M/D that count.

Much stronger results on (x, y) will be given later, but we mention this



fact now as an illustration of the concepts and because Winograd's

preprocessing is of the kind covered by this remark.

The need for the condition that the et are linearly independent mod F
is clear. Otherwise if, say, m 1 and et gie1 + hi9gi9 ht e F, 2 < i <|?
then

d1e1 + + dpep (dx + g2d2 + ••• F g pdp) el + h2d2 + + hpdp

Thus there is only one multiplication that counts.

It is not sufficient to require in Theorem 1 that E n K F, even though
this might seem to prevent a computation in (Q, EuK) from "mixing"
without cost elements from E with elements from K: Let Ü be the quotient
field of the integral domain F [xl9 x2, x3, yl9 y2, y3]/(x1y1 Fx2y2 + v3y3),
and put E F(pcl9 x2, x3) ^ Q,K F(yuy2,y3) ^ Q. In Q, the
elements xu x2, v3 are still algebraically independent over F, and similarly
for >q, y2, y3. Also E n K F. So the conditions of Theorem 1, with
E n K F instead of linear disjointness, hold for x± yt + x2y2 + x3 y3

0. But the computation of this sum requires no operation instead of
2 MID.

One might think that the condition of linear disjointness on E and K
in Theorem 1 is already so strong that we could replace the degree of
transcendence t by just the linear dimension. Thus if el9 epeK are
linearly independent mod F over F and similarly for dl9 dp e K, and E

and K are linearly disjoint over F, does I dt et require at least MID

that count. The next example refutes this conjecture.
Denoting the algebraic closure of a field H by H9 let Q G (x9 y)

where x9 y are algebraically independent over G. Let n > 1 and put
F G(xn, y"), E F(x),K F (y). Clearly the F-base 1, x, x"_1 of
E remains linearly independent over K. Hence, by linear algebra, E and K
are linearly disjoint over F. Consider the element

1 —xnyn
1 xy + x y + + xn 1 y" 1

1 — xy

Obviously this element can be computed in (Q, EvK) with 2 M/D.
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