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LINEAR DISJOINTNESS AND ALGEBRAIC COMPLEXITY

by Walter BAUR and Michael O. RABIN

Dedicated to Ernst Specker on the occasion of his 60th birthday.

1. INTRODUCTION

It is well known that any algorithm for the evaluation of a polynomial

(1) f(y) = xO + xly + ... + xnyna

or of an inner product of two vectors

(2) (xa y) = xlyl + ..+ X’nyn:

requires, under certain natural assumptions such as that y, x4, ..., x, are
algebraically independent over some ground-field F, at least » multipli-
cations. This number of multiplications can of course be achieved by an
appropriate algorithm.

Motzkin [3] has introduced the idea of preprocessing the coefficients of
a polynomial. In certain situations, for example when we have to evaluate
ffor many values y = ¢4,y = ¢,, ... of the argument, though these values
are not given in advance, it makes sense to compute once and for all certain
functions oy (X1, ...r Xp)s ooy Oy (X4, ..., X,) Of the coefficients and use these
oy, ..., o, later on in an algorithm for the calculation of the f(c;), 1.e.
f(»). The ay, ..., o, and the algorithm should be so chosen that the evalu-
ation of f(y) now requires fewer than » multiplications. The cost of this
“preprocessing” of the coefficients x4, ..., x,, is then absorbed in the saving
in the computations f (cy), f (c5), ... .

Motzkin has shown that preprocessing of the coefficients can lead to

. . n C g .
evaluation of f(y) in l—z-l + 2 multiplications and n + 2 additions. From

now on we shall concentrate our attention on the number of multiplications
or divisions used in an algorithm. The notation n M/D means n multi-
plications or divisions. We must take into account divisions as well as

multiplications because a product xy can be computed by doing two
divisions.
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Winograd [6] has noted that if in (2) we allow preprocessing on both

n
the x and y then I_E—l M are sufficient. Namely, assume » even and define

wix) = x;X, + X3X4 + .. + X, 1X, .
If w (x) and w () have been precomputed then

(6 9) = X +y) o +y) + oo+ Koy F1) K Fyumy) — w(x) — w(y)

computes (2) with —2-M There are situations, involving many vectors

x, ¥, 2z, ..., and many scalar products, say, (x, y), (», 2), (x, 2), ..., where
this idea makes computational sense.

n
Can the upper bound 5 in the algorithms for f(y) and (x, y) with pre-

processing be improved. Can we get lower bound results for these and more
general computational problems. We have, of course, to be careful about
the preprocessing that we permit. For example, if we permit to form pro-
ducts x; y; then no multiplications will later be needed in computing (x, y).
Thus preprocessing for (2) should not involve multiplications “mixing” the
X1, .-.» X, With the y,, ..., y,, or with y in the case of f(»). It will be seen
later that the crux of this paper is a precise determination of the sort of
“mixing” that should be avoided so as to yield a good lower-bound result.

In [3] (see also [4]) it is shown thatif F = K < K(y) and if x4, ..., X, € K
are algebraically independent over F, then any computation of f (y) which

n . :
allows the use of any a,, «,, ... € K must involve EM/D’ even if a multi-

plication step a * b is not counted if ae F or b e F, and a step a/b is not
counted when b € F. Similar results hold for polynomials in several variables
Vi1 V25 vee s

Winograd [6] has introduced another lower bound theorem for the case
of computations with preprocessing. His theorem involves restrictions on
the fields in question, and the conditions (involving topology) for the theorem
to hold are difficult to interpret or check in specific cases. The proof in [6]
employs topological methods.

In the present paper we observe that the concept of linear disjointness
of two fields over a common subfield provides a proper framework for a
very general result, Theorem 1, on lower bounds for the number of M/D
operations in computations with preprocessing. The result and its simple
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proof are expressed in purely algebraic terms. In section 4 we apply
Theorem 1 to obtain the known results on lower bounds, as well as new
results which do not fall within the scope of previous methods.

7. BASIC CONCEPTS AND THE MAIN THEOREM

Let Q be a field and S a subset of its elements. Following [5, 6], a
(straight-line) algorithm or computation in (&, S) is a sequence 7:
7 (1), ..., m (/) where for each 1 <k </ we have 7 (k) € S, or for some
i,j <k n) = (+,i,j) or (—,5ij)or (7)) or (/, i, )

With 7 we associate the sequence 7 (1), ..., ¥ (/) of the results of the
computation n. The r (k) are all elements of QU {u}. Define r (1)
= 7 (1) € S. Inductively, if r (1), ...,r (k—1) are already defined we set
rk) = n(k) if n(k)eS, rk) =r@) +r()if nk) = (+,1,)), etc. By
convention, /0 = u + r = u-r = .. = uforre QU {uj.

We say that n computes the elements ay, ..., a,€ Q if there exist
1 <i; <I,1 <j<m, so that for the results of # we have r (i;)) = a,,
1 <j<m.

In the sequel we shall be interested in fields F = Q and two intermediate
fields E, K. Thus

Q

U W
(3) E K
\N U
F

The following concept comes from the theory of fields and from algebraic
geometry, see [1, 2].

Definition. The fields E and K are linearly disjoint over F if any
ey, ..., &, € E which are linearly independent over F are also linearly inde-
pendent over K, i.e. 2 a;e; = 0,aq;eK, only if a; = 0,1 <i <m.

As the definition stands, the fields £ and K play different roles. It is
however easy to see that the above definition implies the analogous state-
ment with the roles of E and K interchanged. (See e.g. [1].)

Our theorem will be about computations # in (Q, EUK). The fact that
we permit using any « € E U K at no computational cost captures, in an
algebraic form, the idea of preprocessing.
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We shall strengthen the contents of our lower bound results by dis-
regarding those M/D used in a computation = where one of the factors or
the denominator is a g € F. An M/ D-operation n (k) = (o, i, j) counts if
r (k) # u and either ¢ = - and r (i), r (j) ¢ F, or 0 = /[ and r(j) ¢ F.

Given ey, ..., e, € E, we say that they are independent mod F over F if
2g;e,eFandg;eF,1 <i<p,impliesg;, = 0,1 <i <p.

With these concepts we can state our main result.

THEOREM 1. Assume that E and K in (3) are linearly disjoint over F.
Let di;e K, 1 <i<<m,1 <j<p, besuch that the degree of transcendence
of D={d;|1<i<m,1<j<p} over Fis t. Let ey, ..,e,eE be
linearly independent mod F over F. If m is any algorithm in (Q, EUK)
which computes all the m elements

dije; + ... +dy,e,

(4)

dmlel '§" cese + d e

mp-p

t
then m has at least I_E_l M|D that count.

The proof will be given in section 3. Let us consider some preliminary
examples.

In (3), let @ = F(xq, ..., X, V1, ---» V) Where x4, ..., y, are algebraically
independent over F, and let £ = F(y¢, ..., ¥,), K = F(xy, ..., x,). Then E
and K are linearly disjoint over F. This can be seen as follows: Assume
2 r;(x)s; (y) = 0is a nontrivial dependence relation, r; (x) e K, s; (y) € E.
Multiplying by some r(x)e F[xq,...,X,] we may assume that all
r;(x)e Flxy, ..., x,. Let m be a monomial in x, ..., x, occurring in at
least one r;(x) and let g, F be the coefficient of m in r;(x). Then
2 g;s;(p) is a nontrival dependence relation with coefficients from F.

So the conditions of Theorem 1 hold for the inner product (x, y)
=x,y, + ..+ x,»y, with t = n (and m = 1). Hence no algorithm =
computing (x, y), even when allowed to use at no cost any rational functions

n
r(xq, .., x,)ek,s(yy, ..., , € Ecan have fewer than rg—l M| D that count.

Much stronger results on (x, ) will be given later, but we mention this
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fact now as an illustration of the concepts and because Winograd’s pre-
processing is of the kind covered by this remark.

The need for the condition that the e; are linearly independent mod F
is clear. Otherwise if, say, m = 1 and ¢; = g;e; + h;, g9, h e F,2 <i <p
then

diey + ... +dye, = (dy+g.d,+...+g,d,)e + hydy + .. + h,d,.

Thus there is only one multiplication that counts.

It is not sufficient to require in Theorem 1 that E n K = F, even though
this might seem to prevent a computation in (@2, FUK) from “mixing”
without cost elements from E with elements from K: Let Q be the quotient
field of the integral domain F [xy, X5, X3, V1, V2, V3l/(X1 Y1 T X2Y2 T X3Y3),
and put E = F(x;,X,,x3) S QK =F(y,y2,53) S Q. In Q, the
elements x,, x,, x5 are still algebraically independent over F, and similarly
for y(,y,, y5. Also En K = F. So the conditions of Theorem 1, with
E n K = F instead of linear disjointness, hold for x; y; + x, ¥, + x5 y;3
= 0. But the computation of this sum requires no operation instead of
2 M|D.

One might think that the condition of linear disjointness on £ and K
in Theorem 1 is already so strong that we could replace the degree of
transcendence ¢ by just the linear dimension. Thus if ey, ..., e,€ K are
linearly independent mod F over F and similarly for dy, ..., d, €K, and E

and K are linearly disjoint over F, does X d, e; require at least |— g_l M|/D

that count. The next example refutes this conjecture.

Denoting the algebraic closure of a field H by H, let Q = G (x, y)
where x, y are algebraically independent over G. Let n > 1 and put
F=G("y),E=F(x),K = F(p). Clearly the F-base 1, x, ..., x"~ ! of
E remains linearly independent over K. Hence, by linear algebra, E and K
are linearly disjoint over F. Consider the element

n..n

1—x"y

-1 = x x2 2 n—1 n—l.
1—xy y+ Xyt 4+ o+ x0Ty

Obviously this element can be computed in (Q, EUK) with 2 M/D.
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3. PROOF OF THEOREM

Put e,= 1 and let (e;);-, (kx some cardinal) be an extension of
€ps €1, .., €, 10 an F-base of E. By linear disjointness, (e;);<, 1s also a
K-base of the K-algebra K [E]. Since for i,j <xe;e; = Xg;; e for

k

suitable g;;, € F we have:

(5) If (Zae;) (Zbje;) = X ¢, e, where a;, b;, c,eK

(and the sums are finite of course) then

= ), abgyeF[{a}u{b;}],
l’J
Any element r € KE, the quotient field of K [E], can be written in the form
2 ae;
r =
X be;

+ &

where a;, b;, ¢ € K, not all b; = 0. Such a representation of » will be called
a canonical representation, and the a;’s and b;’s are the coeflicients of the
given representation. Note that the canonical representation is not unique.

LEMMA. If rq, ..., r, is the sequence of results of some computation in
(Q, EUK) using s M|D that count then there are 2s elements o4, ..., 4, € K
such that each r, # u,1 <v <n, has a canonical representation all of
whose coefficients are in F oy, ..., 005 ).

The proof is by induction on n. The case n = 0 being trivial assume
n > 0.

If r, e E U K then obviously r, has a canonical representation with co-
efficients in F, so the claim follows from the induction hypothesis. The same
applies if r, = u.

Next assume that 7, € Q is the result of a non-counting operation, i.e.
r, = r, + r, for some u,v < norr, is the result of a M/D where one of
the factors or the denominator is a ge F. Let us consider the case
r, = r, +r, the other cases are similar. Choose ay,...,a,;€ K and
canonical representations
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according to the induction hypothesis. Then, by (5), the coefficients of the
canonical representation
AB" + A'B

= -+ c+c’
T BB’ (e+c)

also lie in F [0y, ..., 054l .
Finally let r, = r, - r, (r,=r,/r, resp.), r, € Q. Then, again by (5), the
coefficients of the representation

(A+cB)(A"+c'B") (A +cB) B’ )
T rn ; esp
" BB’ (A’ +cB’)B

lie in Floty, ..., %yq— 2, ¢, ¢'] where ay, ..., 0,5, € K are provided by in-
duction hypothesis. Putting a,,_; = ¢, a,; = ¢’ completes the induction.

p

Proof of Theorem I. Assume that m computes the elements X d;; e;,
ji=1

1 <i<m, in (Q, EUK) with s counting M/D. By the Lemma there exist
oy, ..., %55 € K and canonical representations

Z ik €

p
(6) Y dje = +¢, 1 <i<m,
=1

with coefficients ay, by, € Floy, ..., o). Now fix i. Multiplying (6) by the
denominator gives

(7) (2 bigey) (—cieo+) dise) = Zkl Ak € -
q J

Multiplying out the left hand side and comparing the coefficients of each
e, on both sides (recall that e, ey, ..., are independent over K) we obtain,
by using (5), a system & of linear equatlons for the d;;’s and c¢; whose co-
efficients are F-linear forms of the b,’s. Now the equat1on (7) clearly

determines the element —c¢; ¢, + X d;; e; uniquely. Since the e; are K-linear
J

independent it follows that & has a unique solution, and hence dj,,

c;€ F(ay, ..., %y5), by linear algebra. Since D has degree of transcendence ¢

| - Nl
- over F'we obtain 25 > t,1.e. 5 >

Remark. The method for handling divisions was proposed by Volker
- Strassen and we kindly thank him for this.
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4. APPLICATIONS

Let us start by deriving some results which could also be obtained
from the theorems in [3, 4, 6] mentioned in the introduction. Abreviating
X = Xiyes Xy ¥ = Vise Vs consider Q= F(x,y), K=F(x),
E = F(y). Then E and K are linearly disjoint over F (see e.g. [1], p. 203).

Taking k = 1,e; = i, 1 <i <n, we see that any computation of

n
f(yy) =x,9y + ... F x,y7 in (Q, EUK) requires ri—l M|D that count

even if we disregard a M/D by an element g € F. Thus any preprocessing
using algebraic functions oy, ... in x and algebraic functions f, ... in y,

n
cannot save more than 5 M| D.

Taking k = n, we get a similar result for x; y; + ... + x, y,.
In [6] Winograd has considered the computation of the product Ax

where A=(a;;); i, 18 an m X n matrix and x is the column vector
l=j=n

x = (xy, ..., X,). Computing Ax means, of course, computing the forms
aj1 X1 + .. + diy X, 1 <@ <m. In our notations assume that a;; € E,
X1, --» X, € K. Denote the column vectors of 4 by vy, ..., v,, thus v; e E™.

We say that dim m pm (V4 ...,0,) = r, if r is the largest integer such
that for some subset {iy, ..., i,} = {1, ..., n}

g0, + .. +g,0, €eF" g;eF implies g; = 0,1 <i <r.

Winograd [6] assumes that dim_m ) pm (V4, ...,v,) = 1, and that F < C—
the field of complex numbers. Furthermore K is a field such that F (x4, ..., x,)
c K and K is embeddable in a field of continuous (except for isolated
points) functions f (xi, ..., x,) into C which vanish only at isolated
points; similarly F(yq, ..., V,,) S E, and E is embeddable in a field of
functions g (v4, ..., y,,) With the above properties. Under these conditions,

r
an algorithm for Ax requires at least I—E—I M| D that count.

In purely algebraic terms we can state and prove the following theorem.

THEOREM 2. Let A = (a;;) be an m X n matrix with a;;€ E and let
X1, ..., X, €K be algebraically independent over F. Denote the columns of
A by vy, ..,v,. If E and K are linearly disjoint over F, and if
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dimgm pm (@1, .-r U,) = 1, then any algorithm n in (Q, EUK) which compu-

r
tes Ax has at least I—E_I M|D that count.

Proof. Using vector notation, computing 4Ax means computing all co-
ordinates of the sum

(8) xl‘Z)l + 'y + Xn‘b’n = W.

We may assume that » = n. Otherwise let without loss of generality
4, ...,0,, F < n, be vectors which are independent mod F™ over F. Then
forr <j<nm

‘Z)J = gjlvl T+ e M gjrvr + uj’ g.”EF’ uJEFm.
Hence, from (8),

w = (xl +gr+1,1xr+1+°"+gn1xn)v1 + + xr+1ur+1 + + xnun

- Zl’l)l + coe + err +u,

where u € K™. Now the computation in (@, EUK) of u costs nothing, and
the z,, ..., z, € K are algebraically independent over F. So we have the
conditions of the theorem with r = n.

Assume from now on that v, ..., v, are independent mod F™ over F.
Let e, = 1, eq, ..., e, be elements in E which are linearly independent over
F, such that every a;; (the i-th component of v;), 1 <i <m, 1 <j <n,isa
linear combination of ey, ..., e, with coefficients in F. Each v; can be split
v; = u; + w;, where u; € F™, and every coordinate of w; is a linear com-
bination of just ey, ..., e, with coefficients in F. Thus w = x; w; + ...
+ x,w, + u, where ueK™, and computing x;w; + ..+ x,w, in
(Q, EUK) takes as many M/D that count as does computing w.

Because vy, ..., v, are linearly independent mod F™ over F, we have that
Wi, ..., W, are linearly independent over F. Consider the sum Z, w; + ...

+ Z,w,, where Z, ..., Z, are variables ranging over Q. Writing the i-th co-
p
ordinate of w; as a linear combination X g;; e; and rearranging, we get
J=1

(9) Zywy + ... +Z,w, =[L, (Z)ey+...+Li,(Z)e, |1 —iem
where L;; (Z) = 2 g Z;.
k=1

We claim that among the L;; (Z),1 <i <<m, 1 <j <p, there are n
. forms which are linearly independent. By this we mean that the rows of
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coeflicients of these n forms are linearly independent over F. Otherwise
there are 4,4, ..., h, € F, not all 0, so that the substitution Z; = Ay, ..., Z,
= h, yields L;;(h) =0,1 <i<m,1<j<p. By (99 we now have
hywy + ...+ h,w, =0, contradicting the linear independence of
Wy, ..., W, OVer F.

Let L;;; (Z), ..., L; ;. (Z) be such a system of n independent forms.
Then d; ;; = Lyj, (X1, woos Xp)s oo d; ;. = L; ; (x4, ..., X,) are algebraically
independent over F. This is because x4, ..., x, is the unique solution of the
regular system of linear equations

Lieje(z 1> ...,Zn) = di
Thus, finally

ele?

(10) XyWy + oo+ x,w, = [diyes +.oo+die, ]l —iam

ip-p

with d;; € K, and the degree of transcendence of the d;; over F is n. So, by
n
Theorem 1, at least I_ —2—_| M|[D that count are needed to compute (10), and

hence to compute (8) in (2, EUK).

For the next application let x, ..., x, be algebraically independent
over F and put Q = F (x4, ..,x,),E = F,K = F(xy, ..., x,). Then, by
an argument like the one used in the first example after the statement of
Theorem 1, E and K are linearly disjoint over F. Therefore Theorem 1
implies that for any w € E of degree at least n + 1 over F the computation of

(11) X, + ... + ©"x,

n
in (Q, EUK) requires at least I— E_l M|[D. Note that now we have a result

about substitution of a specific algebraic number in a polynomial. We
allow any rational preprocessing of the coefficients and any algebraic pre-
processing of the argument .

Next we show that no finite number of algebraic functions of x4, ..., x,
simplifies the computation of (11) for all algebraic w of degree n + 1 over
the rationals Q. Since any particular preprocessing of x4, ..., X, by algebraic
functions involve just a finite number of such functions, we essentially
conclude that algebraic preprocessing of x4, ..., X, in (11), as well as the

(w now depends on the chosen preprocessing of the x; of course), does not

reduce the number of M/D that count below I—g—| . Specifically
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THEOREM 3. Let
G=Q(xyg..,%),2=G,ay,..,a,€2, K= G(ay .., a,)
and F = Q. There exists an element o € Q of degree n + 1 over Q such
that any computation n for (11) in (Q, QUK) must have at least rg_l M|D
that count.

Proof. Define F;, = Q n K. We shall prove slightly more than stated,
namely that for a suitable w € Q, computation of (11) in (2, QUK) requires

at least rg_] M/ D that count even if we disregard M/D by a g € Fy. The

diagram of fields is

Qx5 vvns Xp)
ur W
Q K
\N U
F, =QnK
ul
F =Q

Notice that Q = F, and F; n K = F,. This implies that Q and K are
linearly disjoint over F,. Namely let ey, ..., ¢, € F; be independent over F.
Choose a primitive element e € F,, of degree m over F say, such that
ey, ..., e, € Fy (e), and let f(X) e Fy [X] be the minimal polynomial of e
over F;. Assume f = f; f, in K[X]. Since the coefficients of f,, f, are
algebraic over F, and since F; n K = F, we obtain f}, f, € F, [X]. There-
fore f is irreducible in K [X] and hence the elements 1, e, ..., e" ! are
linearly independent over K. By linear algebra it follows that ey, ..., e, are
linearly independent over K.

The degree [F;:Q] is at most [K : Q (x4, ..., x,)] hence finite. This
implies that for any » there exists an algebraic number w € Q of degree
n + 1 over Q which retains the degree » + 1 over F,. For this w the state-
ment in the theorem holds true as a consequence of Theorem 1.
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