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Otherwise
(15) yp(2g) = 1.

Remark. The condition on det g implies non-degeneracy of ¢ at p.

§ 3. PROOF OF THE MAIN THEOREM

Note that the rank of ¢ is even because determinant of the associated
bilinear form is odd. Therefore

X _ a X
(16) yi(aq) = (@ﬁ)) 75 (@)

for any character .

Now let us apply the Weil reciprocity law for the character y with
support in dyadic components equal to the integers in the corresponding
ring, and to the forms g and 2g.

We have

[T 7iQ2q =1
[T 7% = 1.

For an archimedian components we have y* (2q) = yZ (¢) because both
depend only on the signatures. Therefore dividing those two identities,
and using lemma 2 and (16) we obtain the identity (4).

Remark. Levine’s lemma which in a specialization of the theorem for
R = Z in fact follows from Milgram’s formula (12). We should not worry
about ramification. Therefore lemma 1 can be used for the character y,

and is actually a classical property of Gauss sums ([2]). Lemma 2 in this
case essentially contains in [1].

§ 4. PROOF OF THE LEMMAS

Proof of lemma 1. The Witt group of quadratic forms over a field of
zero characteristic is generated by one-dimensional forms ([4]). Because y*
~is a character of the Witt group it is enough to check the lemma for forms
- of one variable. Let = be a local parameter. Suppose that g (x) = o 7’ x2,
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and x (x) = exp (2ni Tr (Br°x)) where « and f are units. Suppose that the
different b of F,/Q, is b = (n’). Let n be an integer such that 2n + b + ¢
+ d > 0. Then we can take as L the lattice (z"). The dual lattice L7 is
(n~b7e™n*49), Therefore

Y (q) = y exp 27i (Tr afnc™x?)/
xe(n—b—e=n—dy(aM)
| > exp 27i (Tr af n°*°x?) |

xe(n—b_c—”"d)/(n”)
After a change of variables n7°7¢7""¢ 3 = x, we obtain

. afy*
exp 271 I <md—z>)

(L T

an  y @ = <

I

),ERp/(nzn—‘;—b—i—C-{—d)

2
afy
Z exp 2ni Ir
yERp/(nZn-}-b—l—c-}rd) p <n2n+b+c+dnd> {

The numerator of y* (¢) is a Gauss sum of the type considered by Hecke [2].
The same arguments show that

(18) 7 (ag) = <n—“—> 7@

Now the support of y is (n°*?%), (det ¢) R, = (n°), and (—%>= 1, therefore
7T

the lemma follows.

Now let F, ; denote a field of 2/ elements. Lety denote a non-trivial
character of the additive group of F, ;. There exist a canonical choice of ,
namely

Tr (x)
F f l F) ‘

(19) B =(-1) °

Note that kernal of %, is an additive subgroup of elements of the form
x + x2.

LeEMMA 3. Let § be a non singular quadratic form defined on a vector
space V over F, ;. Then

(20) V@ = Y %@e)/| > 7a0)]

xeV

is equal to the Arf invariant of g.
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Proof. Both Gauss sum (20) and the Arf invariant are characters of
the Witt group of quadratic forms. Therefore it is enough to check the
statement for binary quadratic forms. But the number of elements in
F,; ® F,; on which y (7 (x)) takes the value 1, is 2251 4+ (Arf g) 277!
and the number of elements where x (g (x)) takes the value —1 is
22771 — (Arf g) 2/ 7. Indeed it is easy to check for form of Arf invariant 1
(which is g (¢, f) = «f). On the other hand form of Arf invariant —1 can
be written as ¢ (o, f) = «? + of + sB?, where s # y + y* for anyy. ([4]).
But if m is chosen in such a way that ¥ (x) = ¥, (mx) (%, is defined above),

we have
Y@ af+5p%) = — Yo ((s+mPa?) (1 +m?p?))

i.e. number of the elements for which y (g (x)) = —1 in a quadratic
space with Arf invariant —1, equals the number of elements for which
7o (g (x)) = 1 in the space with Arf{ invariant 1. Therefore the lemma 3

follows.

Remark. A connection between the Arf invariant and Gauss sums was
first observed in [1].

COROLLARY. Let F, be a dyadic local field. Let y denote a character of
the additive group of F, with support R, Let q be an integer quadratic
form on the R -module V such that the determinant of the associated bi-
linear form is a unit. Then

o @)/ |2 )

is equal to the Arf invariant of g mod p.

X
Proof. The map x—y <—> defines a non-trivial character of R,/TR,.
T ;

Therefore the expressions (20) and (21) coincide.

LEMMA 4. Let y denotes a character of the dyadic field F, with support
R,
Let g denote an integer quadratic form over the R, module V" such that

determinant of the associated bilinear form is a unit. Then

22) 5 X<q (x> _ NV y (q,,(i?)

xeV/[n"V n xeV[n"—2y \T

where N 1s the norm of the prime ideal of R,

L’Enseignement mathém., t. XXVI, fasc. 3-4. 22
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Proof. We follow the classical scheme in [2]. Let x = x; + 7"~ ! x,,
where x, € V/n V and x, € V/a"~*. Then

5 X(g@>:= 5 X(gm)+ﬂ*awbx»+n””qw»>

n n

xeV "V T xieVja"—1ly n
xzeV/nV
q(xy) q (x1) g (x1,X;)
—_ N z X < nl >+ Z X< 1 Z y q ( 1 2_
x1=0(n) T x] T x17Z 0(n) Y
x1eV |1y x1ev a1y

x9eV/nV

The sum in brackets is the sum of the values of the non-trivial (because
det g is unit and supp y = R) character, hence is equal zero. Therefore
we obtain the result of the lemma because

5 Xcuvz S X@@g
x1 = 0 (n) " xeV/a—1y n" 2

xieV /a1y

Now we are ready to conclude the

Proof of lemma 2. Let e denote the ramification index of F, over Q,.
Thus for a character with the support R, the dual of integer lattice V" with

1
respect to form 2q in the lattice — V. Hence

T
(23) Q) = Y x(a®)/| Y x(29)]
xe — - Vv xe ‘n—e viv

5|5 A)
xeV /| meV n xeV /| =€V n

If e is odd then by lemma 4, (23) is equal to

g (x) q (x)
erZ/:nV X<T>/ er%tV * (_TE—_>1

which is, by the corollary to lemma 3, the Arf invariant of ¢ mod p. If
is even then it follows from (22) that (23) is equal 1. This concludes the
proof of lemma 2. :
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