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LEVINE’S FORMULA IN KNOT THEORY
AND QUADRATIC RECIPOCITY LAW

by A. LIBGOBER

§ 1. INTRODUCTION

A k-knot is a k-dimensional submanifold of S$**2 which is homeo-
morphic to a sphere. Any knot K is bounded by a submanifold F**! < S**?2
which is called the Seifert surface of K. One associates with K the Alexander
polynomial 4 (¢). Moreover if k = 4n + 1 then one may associate with F*"* 2
the non-degenerate quadratic Z,-form ¢ on H,,,,; (F**?2, Z,). Levine’s
formula asserts that the Arf invariant of this quadratic form is trivial if
4 (—1) = +1 (mod 8) and is non trivial if 4 (—1) = +3 (mod 8).

Levine’s proof consists of two parts. The first one is topological and
states that both the quadratic function ¢ on H,,,; (F**2, Z,) which is
used for the computation of the Arf invariant, and the Alexander poly-
nomial can be expressed in terms of the Seifert pairing L of F#** 2, which
is the bilinear form on H,,,; (F*'*?, Z). Namely

(1) ¢ (x mod 2) = L(x, x) mod 2
and

(2) A4 () = det (L —tL)

i.e.

(2a) A(=1) = det (L +LY.

(L' (x, ¥) is by definition L (y, x)).

The second part of Levine’s proof is the remarkable observation that
the Arf invariant of a quadratic function defined by (1) can be found in
terms of the associated bilinear form L + L'. He proved the following

(cf. [6])
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Levine’s lemma. Let L (x, y) denote a bilinear form on a free abelian
group such that d = det (L+L’)is odd. Let ¢ denote the quadratic function
on V ® Z, defined by (1). Then

1 if d= +1(mod8)
Arf o =

-1 if = 43 (mod 8)

(We suppose that the range of Arf invariant is =+ 1).

The purpose of this paper is to show that Levine’s lemma is closely
related to the Weil-Milgram reciprocity law ([4], [5]). In fact our main
result is a generalization of Levine’s lemma to arbitrary algebraic number
fields.

Let F denote an algebraic number field and L be a bilinear form on a
projective module P over the ring R of integers in F. Suppose that the
determinant of the symmetrized form d = det (L+L") is relatively prime
to 2.

For any dyadic (i.e. dividing 2) prime ideal p, let Arf L, denote the Arf
invariant of the quadratic form x — L (x, x) mod p over P ® R/p. For
a€ R and a nondyadic prime ideal p we denote the quadratic residue

. e 4 . a
In the same way we denote the multiplicative extension of (—) on the
p

0 if aep

[ 1 if aissquarein R/p
i — ] otherwise .

group of all non-dyadic ideals of R.

THEOREM. With the above notations,

2
4 Arf Ly= | —
: o ()
where P runs through all tamely ramified dyadic prime ideals of R and
dR is the principal ideal generated by d.

In § 2 we give the necessary definitions and formulate two lemmas about
Gauss sums for bilinear forms.

In § 3 we prove the theorem, using the results of § 2. The proofs of the
lemmas in §2 is given in §4. Finally I would like to thank A. Adler,
W. Pardon, and C. Weibel for useful discussions.
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