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ON SHARP ELEMENTARY PRIME NUMBER ESTIMATES

by Harold G. Diamond * and Paul Erdös

Dedicated to the memory ofLâszlô Kalmar

1. Introduction

The first estimates of the true magnitude of the prime counting function

n (x) # {p <x:p prime} were made by Chebyshev [1] in the mid
nineteenth century. By an ingenious argument he proved that as x -» oo

These bounds were somewhat improved by J.-J. Sylvester and others,
but nearly a half a century passed before Hadamard and de la Vallée
Poussin independently succeeded in proving that n (x) / {x/log x} 1 as

x -> co. This is the famous prime number theorem (P.N.T.). Interesting
accounts of the foregoing may be found in the books of Ingham [2],
Landau [3], and Mathews [4].

Here we consider the following hypothetical question. Could Chebyshev
in principle have achieved sharper bounds? We answer this question in the
affirmative in the following

Theorem. Let s > 0 be given. There exists a positive integer T T (s)
such that knowledge of the values of the Möbius ja function on the interval
[1, T) yields the estimate

(1) lim sup I 71 (x)/(x/log x) - 1 I < 8.

* Research supported in part by a grant from the National Science Foundation.

.92129... + o
log x

C 7i (x) < 1.10555 .«4 —— + o
logx
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The main step in the proof is to reduce the estimate in (1) for a given
value of s to an inequality of the form

where T and K depend only on e and GT is an auxiliary function defined
in §2, depending only on the Möbius function ji (n) for n < T. Our proof
of this inequality for general T and K (Lemma 2) uses results known to be

equivalent to the P.N.T., and so our method does not lead to a new proof
of the P.N.T. However, one can in principle verify the estimate of GT (j>)

numerically, which leads to an explicit estimate of the type (1). We use such

numerical estimates in §3 to obtain bounds for n (v) which are sharper than
those of Chebyshev.

Our theorem has a long and curious history. It was first found in 1937

by Erdös and Läszlö Kalmar and independently, and at about the same time,
by J. Barkley Rosser. Erdös and Kalmar decided not to publish it when

they learned that Rosser had a version of the theorem for primes in arithmetic

progression and had already submitted a manuscript for publication.
However, because of various difficulties, Rosser's article never got into
print, and the theorem lived only by word of mouth. We have reconstructed

a proof which we give below.

2. Proof of the theorem. We denote by 1, /*, L, ek, and Â the following
arithmetic functions :

\GT(y)\<T/K (l<y<KT),

1 (ri) 1,

H (n) Möbius' function,

L (n) log n,

1, n k,

ek i (here k is a fixed positive integer)
0, n =£ k,

log p, n
A (n) (von Mangoldt's function)

0, otherwise.

Also, let

<l'(x) z A(n)Z log P-
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It suffices to establish

(2) lim sup 1\j/ (x)/x — 1 I < s
*-»00

instead of (1) because of the familiar inequalities

•AO) E
p^-x

"log X

log p
log p < E log X(x) log X

Ü

/ ^ / V A* W
"W< E ,— ,— +

„^x log n log x

* jMO
i tlog2t

dt
\j/ (x)

^
Bx

log X log X

(The last inequality uses the Chebyshev bound ij/ (x) O (x)).
For / and g arithmetic functions define the multiplicative convolution

of/ and g by

f * g (n)E /(0 g (J)
ij-n

Convolution is an associative operation, and e1 is the identity element.

Familiar relations conveniently expressed in convolution terms are the
Möbius identity 1 * g ex and the Chebyshev identity A* I L.

One can determine A from the last identity by convolving both sides

by g ; however, it is then difficult to handle L * g effectively because of the

irregularity of g. For T a positive integer set

Ht(«)

MM,

_ t e
i < T

o,

g (i),

1 < n < T,

71 T,

n > T.

We shall take gT as a "finite approximation" to g.
We first note a few properties of gT. By construction, I gT (n) / n 0.

For x > 1, the relation

E -Ms) E Ms) + E (- -
x"

\s _s_
n (s)

1+ E n (s)

implies that (7") — O (T). Also, for x < T we have

E 1 * (M E 1 * MM E ei (M 1 •
n n^x n^-x
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(Chebyshev used / e± — e2 - eB - e5 + e30 as an approximation
to fx in his argument. This function has the properties that J] /(/?)/ w 0,

0 <F(x)d5 X 1 V(»)<1
n^x

and F (x) 1 for 1 < x < 6.)
Our starting point is the identity

(3) £ A* 1* [iT(ri)X
n x n x

We shall show that the left side of (3) is nearly \j/ (.x) and right side is nearly x.
We begin by estimating the right side of (3) unconditionally.

Lemma 1. Given s > 0 there exists an unbounded sequence of integers
T such that

I Y L* jiT (n) — x I < ex (x>x (T))
n x

Proof Summation by parts shows that

Ylog n ylog y - y+ (log ey) 1).
n v

Thus

Y L*/ÂT(n)Y Z log'Ar 0)= Z log »Ar 0)z
n ^x
z

j
r x

z • yj 1~X u

ij^x

t^x/j

(xlogx x) £ Y (j)

+ 0 {(log ex) X I U) I} •

j^X

Suppose that x > T. Then the first sum is zero by the construction of
HT. The third term is O (T log ex).

To evaluate the second term set

m(u) Y MO/l mi(y) Ji m(u)du/u
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The definition of fiT and integration by parts give

v log; v T n(j)- X -T- Ht(j)I log
j^CT J j^T J J

*T rp
log - dm (it) — mt(T)

J l- 11

We claim that m1(T) 1 for a sequence of T s tending to infinity.
Indeed, since s J5° w~s_1 du 1, an average of mi is provided by

s u'"'1 m1{u)du
1

(s + 1)

(two integrations by parts), and the last expression approaches 1 as s -> 0 +.
Also, (:T+a) - mi (T) -> 0 as T -> oo, 0 < a < 1. Thus it is impossible
that m1 (n) be ultimately bounded away from 1 for integral values of n.

To evaluate the left side of (3), set

g gT1 *gT, G (x)Gt(x) £ g
n X

Then we have (by the "hyperbola method")

£ A*g(n)X (0
n x i i^ x

X ^0/;') 9(j) +X GPj^T-1 i^x/(T-1) V~~ 1/
I + II — III, say

Since fiT (n) /j, (n) for all n < T we have # (y) 1 * A* 0") for all

j < T. Thus I if/ (x) and III xj, (x / (T- 1)) « O (x/T).
We study G to estimate II. For y > T we have

G(y) X g(n)X 1 (0 0)

- £ M/]frO) I (--{-j)«rÜ).
J^y j^T \J IJJ/

Thus

(4) GO)=- X { ylj } H-(j)+ T£ M/>/; •

i < T jf < T

The last sum is bounded, as we noted earlier, and so (T) for
all j > T.
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For Kalarge positive number, write

£ g(-W)= £ + £
i^x/(T-l) V/ i^x/TK xlTK<i^x/(T-l) \ 1J

The first sum is G (x/2£) by the preceding estimate and Chebyshev's bound
Ij/ (y) O (y). We shall use the prime number theorem to estimate the
size of G (.x/i) in the last sum.

Lemma 2. Let K > 0. 77zere exists a number T0 T0 (K) such that

if T>T0 then \GT (y)\ < T/K holds for all y < TK.

Proof We may suppose that y > T, for G (y) 1 for 1 < y < T.

We estimate G using (4). A result "equivalent" to the P.N.T. is the estimate

£ um - 0 (T -> co)
J <T

Thus, if T is large enough we have

t\ L} £ < T/3K

The remaining sum in (4) is

£ j-N(;) £ + £ I- /«/)•
j<T U J j^T/3K T13K< j < T (.7 J

The first sum on the right is bounded by T/3K in modulus.
We estimate the last sum by breaking its summation range into sub-

intervals a < j < b on which [y/j] is constant. The number of such ranges
cannot exceed the maximal value of [y/j], i.e. TK / (T/3K) 3K2. On each

interval we sum by parts and use the monotonicity of {y/j} and the estimate

M(z)£ n(n) o(z) (z—>oo),
n^z

which follows from the P.N.T. We obtain
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provided that T is sufficiently large. Thus

£ {f}"0)
and I G (y) | < T/K for all y < TK.

Returning to the estimate of II we have

<
2 T
Jk

i^xl(T-1)
E G tU(0 <0l|)+ I 1^(0

J^/ xI TK<i^xI(T—l) ^
o

K

provided that T is sufficiently large.

Combining all estimates involving (3) we obtain finally

>A U) + O (Tj+ O x + O (ex)

where s, 1 \T and 1 \K can all be taken as small as we wish.

3. Calculations. We conclude by applying our method to obtain
bounds for \j/ (x)/x sharper than those of Chebyshev (though not as good
as the bounds of Sylvester).

- Returning to (3), we have

E C* Ht fa) xmx (T) + O (Tlog ex),
n<x

and direct calculation shows that m1 (T) is close to 1 for a sequence of 7"s.
For example, we have

T 3 5 7 11 32 152

mx (T) - 1 -.104 -.019 - .0045 - .00072 -.000030 - .00000037

We write the left side of (3) as

' T I Y I A (' •

TK TK 1
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In the first sum we use the bound | GT (x/i) | < 3772, which is easily deduced
from (4); for the second sum we calculate GT (y) directly for T — 1 <y
< TK, and let U U (T, K) and L L(T, K) denote the upper and lower
bounds for GT on this interval.

Combining the estimates we obtain

(5)

< xm1 (T) + 0 (T log ex)

> xmj (T) + O (T log ex)

We give an upper estimate of \j/ (x)/x using (5) with T 100,

TK 8911, L > -4.9054, mi (100) < 1.00104, and Chebyshev's bound
lim sup \j/ (x)/x < 1.1056. We find that lim sup iJj (x)/x < 1.085. We
estimate \J/ (x)/x from below by using (6) with T 101, TK 11149,

U < 7.2930, m1 (101) > 1.00134 and the preceding upper estimate of
\J/ (x)/x. We find that lim inf \jj (x)/x > .924.

Might Chebyshev have improved his bounds for \j/ (x)/x if he had used

this method? We must report that that is quite unlikely, because considerable
calculation was needed to obtain the modest improvement we have achieved.

Note added in proof. Diamond and Kevin Mc Curley have found
another sharp elementary estimation method. Their article "Constructive
elementary estimates for M (x)" will appear in Number Theory — Proceedings

of a conference held at Temple University, May 1980, Lectures Notes
in Math., Springer-Verlag, Berlin.
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