Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 26 (1980)

Heft: 1-2: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: ON SHARP ELEMENTARY PRIME NUMBER ESTIMATES
Autor: Diamond, Harold G. / Erdds, Paul

Kapitel: 1. Introduction

DOI: https://doi.org/10.5169/seals-51076

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-51076
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

ON SHARP ELEMENTARY PRIME NUMBER ESTIMATES

by Harold G. DiamonD * and Paul ERDOS

Dedicated to the memory of Ldszlé Kalmar

1. INTRODUCTION

The first estimates of the true magnitude of the prime counting function
n (x) = # {p <x:pprime} were made by Chebyshev [I] in the mid
nineteenth century. By an ingenious argument he proved that as x — oo

X X X X
92129... +o|l——) <m(x) <1.10555... —— + o0 :
log x log x log x log x

These bounds were somewhat improved by J.-J. Sylvester and others,
but nearly a half a century passed before Hadamard and de la Vallée
Poussin independently succeeded in proving that 7 (x) / {x/log x} - 1 as
x — oo. This is the famous prime number theorem (P.N.T.). Interesting
accounts of the foregoing may be found in the books of Ingham [2],
Landau [3], and Mathews [4].

Here we consider the following hypothetical question. Could Chebyshev

in principle have achieved sharper bounds? We answer this question in the
affirmative in the following

THEOREM. Let ¢ > O be given. There exists a positive integer T = T (g)

such that knowledge of the values of the Mobius u function on the interval
\ [1, T) yields the estimate

(D lim sup | 7 (x)/(x/log x) — 1 | <e.
i X0
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The main step in the proof is to reduce the estimate in (1) for a given
value of ¢ to an inequality of the form

|Gr ()| <T/IK (1<y<KT),

where T and K depend only on ¢ and G is an auxiliary function defined
in §2, depending only on the M&bius function u (n) for n < T. Our proof
of this inequality for general T and K (Lemma 2) uses results known to be
equivalent to the P.N.T., and so our method does not lead to a new proof
of the P.N.T. However, one can in principle verify the estimate of G (y)
numerically, which leads to an explicit estimate of the type (1). We use such
numerical estimates in §3 to obtain bounds for 7 (x) which are sharper than
those of Chebysheyv.

Our theorem has a long and curious history. It was first found in 1937
by Erdos and Laszlé Kalméar and independently, and at about the same time,
by J. Barkley Rosser. Erdés and Kalmar decided not to publish it when
they learned that Rosser had a version of the theorem for primes in arith-
metic progression and had already submitted a manuscript for publication.
However, because of various difficulties, Rosser’s article never got into
print, and the theorem lived only by word of mouth. We have reconstructed
a proof which we give below.

2. PROOF OF THE THEOREM. We denote by 1, u, L, ¢, and A the following
arithmetic functions:

1(m) =1,
u(n) = Mobius’ function,
L (n) = logn,
1,n = k,
e, (n) = (here k is a fixed positive integer)
0, n # Kk,
[ log p, n = p*
A () =4 (von Mangoldt’s function)
l 0, otherwise.
Also, let

yx) = Y Am = ) logp.

H=% p*r=x
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It suffices to establish
(2) lim sup |y (x)/x — 1| <e

X+ 0

instead of (1) because of the familiar inequalities

1
Y(x) = ) l:;;i;:llogp< Y logx = n(x) logx,

p=x p=x
A ¥ t Bx
r) < Y (n) l//(x) wz it < l,0() <
nex logmn 10gx . tlog”t ~ log x logx

(The last inequality uses the Chebyshev bound ¥ (x) = O (x)).
For f and g arithmetic functions define the multiplicative convolution
of fand g by
frgm = X fDgQ).
ij=n

Convolution is an associative operation, and e; is the identity element.
Familiar relations conveniently expressed in convolution terms are the
Mobius identity 1 * u = e; and the Chebyshev identity 4 * 1 = L.

One can determine A from the last identity by convolving both sides
by u; however, it is then difficult to handle L * u effectively because of the
irregularity of u. For T a positive integer set

p(n), 1<n<T,
pr(n) =y =T 3 1), n =T,
i<T i
0, n>T.

We shall take pp as a “finite approximation” to pu.

We first note a few properties of ur. By construction, X ur (n) /n = 0.
For x > 1, the relation

L In0 = 3 [Huo+ 3 z- Hias

=1+ Z {—} u(s)

implies that p, (T) = O (T). Also, for x < T we have

Z 1*pr(n) = z 1*p(n) = 2 e;(n) = 1.

n=x n=x n=x
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(Chebyshev used f = e; — e, — e3 — e5 + 5, as an approximation
to u in his argument. This function has the properties that ) f'(n) /n = 0,

0<FXT Y 1*¥f(m<l  (x>1),

n=—x

and F(x) = 1forl <x < 6.)
Our starting point is the identity

(3) Y A*l¥ur(m) = Y L¥ur(n).

n=x n=x

We shall show that the left side of (3) is nearly Y (x) and right side is nearly x.
We begin by estimating the right side of (3) unconditionally.

LEMMA 1. Given ¢ > O there exists an unbounded sequence of integers
T such that
| > L*ur(n) —x| <ex (x=x(T)).

n=x
Proof. Summation by parts shows that

Y logn =ylogy —y +0(logey) (y>1).

n=y
Thus
>, L¥pr(m) =}, Z loginur(j) = Z log i pr(j)
n=x n=x 1Jj=n 1j=<=x
- X (X lgdur()
Jj=x i=x/j

{—;ﬁ(log x —logj —1) + O (log eX/j)} tr (J)

L
xlogx—x) Y ur(Di-x ¥ °f’ 1r (j)

J=x j=x

I

+ O0{(ogex) Y |ur()|}-

Jj=x

Suppose that x > 7. Then the first sum is zero by the construction of |
ur. The third term is O (T log ex). ;
To evaluate the second term set

mw = Y @i, miQ) = J7m@dufu.

i=u

i
i




— 317 —

The definition of ur and integration by parts give

log j _ T
-y 22l = Y log as

J=T J j=T .] ]

T T
=J‘ log — dm(u) = m(T).
i u

We claim that m, (T) — 1 for a sequence of T’s tending to infinity.
Indeed, since s |{° u=* Y du = 1, an average of m, is provided by

s(Pu™ " m (wdu = ————

Ji () s{(s+1)

(two integrations by parts), and the last expression approaches 1 as s — 0 +.

Also,m; (T+a) — m{(T) > 0as T — o0, 0 < a < 1. Thus it is impossible

that m, (n) be ultimately bounded away from 1 for integral values of n. []
To evaluate the left side of (3), set

g=9gr=1%ur, Gx) =Gr(x)= ) g).

n= X

Then we have (by the “hyperbola method”)

> o A*gm)y = Y  ADg()

S ovea) + Y G AW — G(T —1)y <_X__>
j=T-1 i=x/(T—1) T—-1

=1 + II — III, say.

I

Since pr (n) = p(n) for all n < T we have g (j) = 1* u(j) for all
J<T.ThusI =y (x)and Il = ¥ (x /(T—1)) = O (x/T).
We study G to estimate II. For y > T we have

G = Y g= Y 10urQ)

= 2 Dile) = X <”}V - {f}) pr () -
Thus .
(4) GOy = — j;T Whitu) +THITY Y w(-

The last sum is bounded, as we noted earlier, and so G (¥) = O(T) for
ally > T.
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For K a large positive number, write
X ) X '
> Glo)al) = Y o+ Y G(Z)A0).
i=x/(T—1) l i=x|TK x|TK<i=x[(T—1) l

The first sum is O (x/K) by the preceding estimate and Chebyshev’s bound
Y () = O (y). We shall use the prime number theorem to estimate the
size of G (x/i) in the last sum.

LEMMA 2. Let K > 0. There exists a number T, = T, (K) such that
if T>T, then ] Gr(y) l < T/K holds for all y <TK.

Proof. We may suppose that y >T, for G(y) =1 for 1 <y < T.
We estimate G using (4). A result “equivalent” to the P.N.T. is the estimate

> u(i—=0 (T-owm).

Jj<T

Thus, if T is large enough we have

< T/3K .

y o
T{;} >oou(l

j<T

The remaining sum in (4) is

s o= 5 o+ 5 [
j<T J j=T/3K T/3K<j<T J

The first sum on the right is bounded by 7/3K in modulus.

We estimate the last sum by breaking its summation range into sub-
intervals a < j < b on which [y/j] is constant. The number of such ranges
cannot exceed the maximal value of [y/j], i.e. TK / (T/3K) = 3K?. On each
interval we sum by parts and use the monotonicity of {y/;j} and the estimate

M@= Y w)=o0(@ (-,

n=xz

which follows from the P.N.T. We obtain

y : y y
., (o = (o -
+ Y ({1} - {—y—>} M(j) = o(b) < T/9K®
a<j<b .} J+1
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provided that T is sufficiently large. Thus

: Z {y} 0| < 2T

— ¢ KU P

! j<T J 3K
anle(y)|<T/Kforally<TK. H

Returning to the estimate of II we have

X X T X
2 G(-:)/l(i)l<0(—)+ Y - A(i)—_—0<~>,
i=x/(T-1) \! K)  jrr<izxyr-1 K K

provided that T is sufficiently large.
Combining all estimates involving (3) we obtain finally

Y (x) + O (%) + 0 <%> = x + O (ex),

where ¢, 1/T and 1/K can all be taken as small as we wish. O

3. CALCULATIONS. We conclude by applying our method to obtain
bounds for y (x)/x sharper than those of Chebyshev (though not as good
as the bounds of Sylvester).

* Returning to (3), we have

Y L*up(n) = xm(T) + O(Tlog ex),

n<x

and direct calculation shows that m; (T) is close to 1 for a sequence of T"s.
For example, we have

T 3 5 7 11 32 152

m(T)—1| —.104 —.019 —.0045 -—.00072 —.000030 -—.00000037

We write the left side of (3) as

w<x)—w<T%]—)+ I GT(§)A(1'>.

— TK TK T T—-1
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In the first sum we use the bound ] G (x/i) | < 3772, which is easily deduced
from (4); for the second sum we calculate G, (y) directly for 7 — 1 < y
< TK,andlet U = U(T,K)and L = L (T, K) denote the upper and lower
bounds for G'; on this interval.

Combining the estimates we obtain

(5) Y -y (;—i—;) - % ”(?XE) +L{‘”<‘Tx—1> _wa_K)}

< xmy(T) + O(T log ex),

X 3 X X X
© v -y (755)+ 3 14 (7) + 0 (5 5) (7))
> xmy (T) + O(T log ex).

We give an upper estimate of y (x)/x using (5) with T = 100,
TK = 8911, L > —4.9054, m, (100) < 1.00104, and Chebyshev’s bound
lim sup ¥ (x)/x < 1.1056. We find that lim sup ¥ (x)/x < 1.085. We
estimate Y (x)/x from below by using (6) with 7' = 101, TK = 17749,
U < 72930, m; (101) >1.00134 and the preceding upper estimate of
Y (x)/x. We find that lim inf ¥ (x)/x > .924.

Might Chebyshev have improved his bounds for i (x)/x if he had used
this method ? We must report that that is quite unlikely, because considerable
calculation was needed to obtain the modest improvement we have achieved.

NOTE ADDED IN PROOF. Diamond and Kevin Mc Curley have found
another sharp elementary estimation method. Their article “Constructive
elementary estimates for M (x)” will appear in Number Theory — Procee-
dings of a conference held at Temple University, May 1980, Lectures Notes
in Math., Springer-Verlag, Berlin.
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