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2. Lemmes de Hensel

Dans ce paragraphe il est essentiel de supposer que K est complet pour
sa valuation.

2.1. Dans le cas commutatif il existe deux types de lemmes de Hensel.

Une propriété de factorisation d'un polynôme relativement aux valeurs

exceptionnelles qui lui sont associées (pentes du polygone de Newton).
Pour les polynômes différentiels on aura exactement la même propriété

pour les valeurs exceptionnelles < a (pentes > - a) (corollaire 2.6). Toute
la partie correspondant à t > a sera regroupée en un seul facteur fuchsien

(a-dominant) (théorème 2.4).
Par ailleurs pour un polynôme à coefficients dans l'anneau de valuation

de K, si par passage au quotient on a une factorisation dans le corps résiduel
en facteurs premiers entre eux, cette factorisation se relève. Dans le cas des

opérateurs différentiels pour pouvoir passer au quotient il faut d'abord
supposer que la dérivation envoie l'anneau de valuation de K dans lui-
même, c'est-à-dire que a > 0. Si a > 0, la dérivation est triviale sur le

corps résiduel, donc par passage au quotient les polynômes différentiels
commutent; alors une factorisation en facteurs premiers entre eux se relève
(théorème 2.5). Dans le cas oc 0 on ne peut pas obtenir de résultat général.

Chaque cas d'espèce demande un traitement particulier. Le cas parti-
d

culier K k ((*)) et d x — sera traité plus loin (Théorème 2.13).

2.2. Lemme. Soient A,P, Q,P', Q' e DK tels que

(1 )A QP P'Q'
(2) deg P deg P' (deg Q deg Q')

(3) pour tous P, QeD, deg P < deg P et PQ' QP entraînent
P Q 0.

Alors on a D/DP ~ DjDP', DjDQ ~ D/DQ', D/DA ~ D/DP
© D/DQ. (Les isomorphismes étant des isomorphismes de D-modules à
gauche).

Pour la notion de D-module on renvoit à [Mn].
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Démonstration (Malgrange). On considère la suite exacte de D-modules
à gauche

X n
0 D/DQ - DIDA -» D/DP 0

où la première flèche (resp. la seconde) est définie par passage au quotient
à partir de la multiplication à droite par P (resp. à partir de l'identité). De
même on a la suite exacte

X' n'
0 -> D/DP' D/DA D\DQ' -> 0

Nous allons montrer que le morphisme \iX est un isomorphisme de

D/DP' sur D/DP. Comme ces deux modules sont finis et de même rang
sur K, il suffit de montrer que fiX est injectif. Or, soit a g D/DP' tel qu'on
ait fiX (a) 0. En relevant g en S g D cela signifie qu'on a SQr g DP.
L'ensemble des S vérifiant cette dernière condition est un idéal à gauche
de D contenant P', et il suffit de montrer que P' engendre cet idéal. Si

c'était faux, le générateur P de cet idéal serait de degré < degP' et l'on
aurait la relation PQ' QP, ce qui est incompatible avec (3).

(On montre de même que fi'X est un isomorphisme de D/DQ sur D/DQ').
Mais alors l'application X (fxX)"1 est un relèvement de /x ce qui démontre

la dernière assertion.

2.3. Remarque.

On a observé dans la démonstration précédente que si l'on avait une
factorisation A QP, on identifiait de façon canonique D/DQ à un sous-
module de D/DA. Réciproquement soit N un sous-D-module du D-module

M DjDA. Soit m l'image dans M du polynôme constant 1 de D, c'est

un vecteur cyclique de M et l'on a Am 0. Soit u l'image de m dans le

D-module quotient M/N; u est un vecteur cyclique de M/N. Si P e D est

le polynôme différentiel unitaire minimal que annihile w, alors P divise A
et M/N ^ D)DP. Soit A QP, D/DQ s'identifie avec le noyau de l'application

quotient M M/N, donc DjDQ ^ N. On voit donc qu'il est

équivalent d'étudier la factorisation de l'opérateur A et de rechercher les

sous-modules du D-module D/DA.

2.4. Théorème. Soit A g Dk. Soit t < a.

1) Il existe Q,PeDK avec P t-dominant, deg P — N {A, t), tels

que A QP.
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2) (Unicité). Si l'on a une autre décomposition A Q1P1 vérifiant
les mêmes conditions, il existe a # 0 de K tel que Q1 Qa

1 et

P1 aP.

3) Il existe Q\P'eDK avec P' t-dominant, degP' N(A, t),
tels que A — P' Q.

4) On a D/DP ~ D\DP\ D/DQ ~ D/DQ', D/DA ~ D/DP © D/DQ.

Démonstration :

1) Soit A 1 at d\ Posons N N (A, t). Posons P0 I at d\
i^N

On définit Pn Qn, Rn de DK par les formules de récurrence

A QnPn + Rn deg Rn < deg Pn

Pn+1 Pn + Rn •

Soit X v (A~P0, t) - v (A, t). Il résulte de la définition de

N N (A, t) que À > 0.

Nous allons montrer par induction sur n que l'on a

(ï)n Pn est /-dominant et v (Pn, t) v (A, t).

(iï)„ v(l- Qn, 0 > 2

(iii)„ v t) > v (A4, 0 + (72+ 1) A

(iv)„ v (Qn+1 - 0 > (n + 2) A.

Remarquons que P0 est de degré N et que le coefficient de dN dansP0
est aN; d'où

v(PQ,t) inf + «Ar + iV/ inf (v (a/) + it) v(A,t)
i^N i

ce qui montre (/)0.
Comme P0 est /-dominant et que l'on a

A - Po(1 -Qo)P +RodegR„ < deg

il résulte de la proposition 1.12 et de la définition de A que l'on a

v(l-Qo,t)>v(A-P0,t)-v(P0,t)>A
et v(R0,t)>v{A-Po,t)>v{A,i)+ A

ce qui montre (ii)0 et (iii)0.
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Comme l'on a

^ QnPn + Rn Qn+l^n+l + Rn + 1 Qn + 1 (Pn + &n) + &n +1

d'où

(1-Qn)-R„ (ön+1 -Qn)P„ + R„+1deg deg Pn

il résulte de (i)„ (ii)w (iii)„ et de la proposition 1.13 que

(Qn+1 - <2„> Qn, t) +v (P„, t) - V (P„, 0 > O + 2) 2

et v (Rn+i, t) v (1 — Qn, t) + v (Rn, t) > (n + 2) À

ce qui montre (iv)„ et (iii)„+1.
D'après (iii)„ v (Rni t) > v (A, t) v (Pn, t), donc

v(Pn+ut) ®(P„,0 v(A,0

Par ailleurs il est clair que Pn+ t est de degré TV et que le coefficient de

dans P„+1 est Il en résulte, comme pour P0, que Pn+1 est /-dominant,
ce qui montre (i)w+ t.

Enfin d'après (ii)„ et (iv)„

V (1 —ôn+lJ 0 > inf (t> (1 — Q„, 0> V (ôn — ôn+l) 0) > A

ce qui montre (ii)w+ <L.

Ceci achève la démonstration des formules (i)„ (iv)n.
On a pour tout n deg Pn N, deg Rn < deg ^4, deg Qn < deg A — N.

Les relations (iii)n et (iv)„ montrent que les coefficients de Rn tendent vers
0 et que les coefficients de Pn et Qn forment des suites de Cauchy. Comme K
est complet ces suites convergent. Soient P lim Pn et Q lim Qn. On
a A lim (Q„Pn +R„) QP.

Enfin il est clair que le coefficient de dN dans P est aN. Ceci joint au fait
que v (P, t) lim v ÇPm t) v {A, t) montre que P est /-extrémal et que
degP N N(A, t).

2) Effectuons la division euclidienne de Px par P. Comme degPj
deg P N (A, /)) on a

Px aP + R deg R < deg P, a e K

Comme P est /-extrémal ceci entraîne

ZV(P,0 < deg P < degP N(P,t).
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De la relation A QPQ^on tire

QxR (ôi

Comme t>a on a en premier lieu

N(Qi,0 JVCA, 0 -N(Pltt) o

et par conséquent

TV (Qi R, t)N(g1;t) + iV CR, 0 IV (R, t) Al (ôt - ö«> 0 + (p> 0-

Cette relation jointe à l'inégalité IV (R, f) < iV (R, t) entraîne

!V(R,0 N(Qx -Qa, t- co

c'est-à-dire R ßi ~ ßß 0 ce qui démontre 2)

3) Cela se fait comme en 1) en changeant l'ordre des produits.

4) Supposons qu'on ait PQ' QP avec deg P < deg P.

On a comme précédemment N(Q\ t) 0 et

N (P, 0 < deg P < deg P N(P, t)

ce qui, joint à

JV (P, 0 + N(Q',t) N (ß, 0 + JV (P, 0

entraîne P ß 0. On applique alors le lemme 2.2.

2.5. Exemples.

/ s
d

2.5.1. Soit &((x)) muni de la dérivation ô — (cf. § 1.14). En
y dx

appliquant le théorème précédent avec t — a — 1, on obtient une
décomposition de l'opérateur différentiel A en un facteur fuchsien P et un facteur

ß totalement irrégulier, c'est-à-dire qui ne possède pas de facteur fuchsien
de degré non nul.

2.5.2. Soit L un corps valué ultramétrique. L'application Pt->i> (P, 0)
définie sur L [X] s'étend à L (X) et définit une valuation sur L (X) appelée
valuation de Gauss. Le complété de L (X) pour cette valuation sera noté

d
E (cf. [Dw] pour plus de détails). La dérivation d — définie sur L (X)
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est continue et s'étend äE. On a a (ô) 0. Le théorème précédent s'applique
donc pour t < 0. (Le cas t 0 a été considéré dans [Ro]).

2.5.3. Remarquons que les résultats du § 1 sont encore valables si les

coefficients des opérateurs différentiels sont pris non pas dans un corps
mais dans un anneau valué. Dans la proposition 1.13 pour pouvoir effectuer
la division euclidienne il faut bien sûr supposer que le coefficient du terme
de plus haut degré de P est inversible dans l'anneau considéré.

En particulier la démonstration du théorème 2.4 reste valide si l'on
suppose que le coefficient aN de l'opérateur A est inversible.

Cette remarque nous sert dans la situation suivante :

Soit L un corps valué ultramétrique complet algébriquement clos. Soit
S un sous-ensemble de L. Si/ définie sur S, est la limite uniforme sur S de

fractions rationnelles sans pôles dans S on dit que / est un élément analytique

sur S. Supposons que S soit une union de classes résiduelles de L\
alors en utilisant les propriétés du paragraphe 1.3 on montre facilement

que pour une fraction rationnelle / sans pôles dans S, inf (/(*))
xeS

v (/, 0). Il en résulte que l'anneau H (S) des éléments analytiques sur S
s'identifie à un sous-anneau fermé de E, défini en 2.5.2. On dit que/eis
est un élément analytique admissible (cf. [Dw]) s'il existe un sous-ensemble

S formé de toutes les classes résiduelles sauf un nombre fini (on dira que S
est standard) tel que / soit un élément analytique sur S. L'ensemble des

éléments analytiques admissibles forme un sous-corps H do E qui n'est pas
complet pour la valuation. Mais pour chaque a e H, il existe un ensemble

standard S tel que a g H (S) et que a ne s'annule pas dans S (cette dernière
condition peut être réalisée car un élément analytique sur un ensemble

standard n'a qu'un nombre fini de zéros). Alors l'anneau H (S) est complet
d

et a est inversible dans H (S). Pour la dérivation ô — de ET, H (S) est
dx

stable. Le théorème 2.4 est donc encore valable pour les opérateurs à

coefficients dans H bien que H ne soit pas complet.

2.6. Corollaire. Soit A e DK et soit t < oc.

1) Il existe Q,Pe DK, avec P t-extrémal et deg P — N (A, t)
— n (A, t), tels que A QP.

2) On a également une factorisation A — P' Q' où P' vérifie les mêmes

conditions que P.

3) On a DjDP ~ D/DP', D/DQ ~ D\DQ\ D/DA ~ D/DP ® D/DQ.
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Démonstration. D'après le théorème 2.4 il existe L, B e DK, avec B /-dominant

et N(B, t) N(A,t) tels que ALB.

Alors N(L,t)0, donc N(L, s)0 pour .s > t et n {L, s) 0 pour

s > /. Par conséquent pour s > / on a

N(B, s) N(A, s) et n (B, s) n (A, s)

Pour s assez voisin de /, s >t,ona n{B, t) N s). Pour un tel s

il existe M,P e DK, M ^-dominant, tels que B MP et N (M, s) N s).

On pose QLM. On a donc AQP. Par ailleurs deg N (A, t),
deg M N(B, s) n(B, t) n (A, t), et donc deg P N (A, t)
— n (A, t).

Comme t < s, N (M, t) — n (M, t) deg M, d'où

N(P,t) N(B,t) — N (M, t) N(A,t) -n(A,t)
n (P, t) n (.B, t) — n (M, t) 0

ce qui montre que P est ^-extrémal.

2) Se démontre de même et 3) se démontre comme le 4) du théorème 2.4.

2.7. Notons @ l'anneau de valuation de K. Supposons que a (ô) > 0.

Alors la dérivation envoie G dans son idéal maximal et par passage au

quotient induit la dérivation triviale sur le corps de restes k de K.
Nous noterons G [0] l'anneau des éléments de DK dont les coefficients

sont dans G. Soit A Iat dl e G [d] et A I at ôl e k [d] son image.

Supposons qu'on ait une factorisation Ä Q*P* dans k [3], nous cherchons
si cette factorisation se relève dans G [3]. La démonstration classique de ce

lemme de Hensel dans le cas commutatif (cf. par exemple [Am] 2.5) ne se

généralise pas au cas des opérateurs différentiels. Nous allons donc suivre
la méthode de [Dw] § 6 qui interprète l'équation A QP en un système

d'équations différentielles non linéaires portant sur les coefficients de Q

et P. Nous allons donc commencer par étudier à quelles conditions un
système d'équations différentielles non linéaires ayant une solution dans
le corps résiduel a une solution dans G.

Soit un système différentiel non linéaire de m équations à m inconnues à

coefficients dans G. Précisément posant

X (Xy,Xm),Yt(7(. 1; 7, J 1 < /' < v

et X"= XÏ' X"mm pour n e Nm, soit
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(2.7.1) F(X9YU...,YS) Y Cß9(vi)X»Y?..,Yl*

avec p, Di g Nm, la somme étant finie, et avec Cßt (t>g Om.

Nous cherchons une solution dans (9m de l'équation

(2.7.2) G(X)défF(X,S(X),...,5s(X)) 0.

Pour u e(9nousappelons application tangente à G en w, l'application
Lu de <Sm dans lui-même définie par

m

(2.7.3) L„(z) L„(z1;..., zm) Y, zi ("» 3(")> •••)
i= 1 dAf

s m dF+ZZ 5Jzi ("'3 (")>•••) •

/-I i=l aïj,i
Nous écrirons

Lu (z) -4„ (z) + Bu (d (z))

dF
où ^(M (z) I" Z; — (u, Nous utiliserons la même notation Au pour

i 1

désigner l'application de $m dans lui-même et la matrice qui lui est associée.

Par passage au quotient l'équation (2.7.2) devient

(2.7.4) G(D=XCMO)P 0

dont l'application tangente en u* g &m est Äu* définie par

dG
(2.7.5) 4,.(z) Z z,. —(«*).

i 1 vXi

2.8. Proposition, Sh/7 a > 0. Soient F et G définies par les formules
(2.7.1) et (2.7.2). Soù u* g km une solution de l'équation réduite G (u*) 0.

Supposons que l'application tangente réduite Au* est inversible dans km.

Alors u* se relève de façon unique en une solution ue(9m de l'équation
G (iu) 0.

Démonstration. Soit r\ un relèvement de w* dns (9m. Considérons le développement

taylorien de G autour de r\

(2.8.1) G^+X) G (ri) + A„ (X) + (S (X)) + Q„ (X)
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On a An Au*. D'après notre hypothèse det (Aut) A 0, ceci signifie

que det (An) est une unité de & donc que An est inversible dans GLm (dé¬

posons u t] + w. Alors l'équation 0 équivaut à

(2.8.2) w - A;1(G(f?)+B,(0(w))+Ô,(lv)) déf

On munit Km de la norme (exprimée sous forme additive) définie pour
A (xlt..., xj eKm par v (X)inf v (xf

i
Notons que, comme Qn ne contient que des termes au moins quadratiques

en la variable et ses dérivées on a pour tous z, y e (9m

v(6,0)) > 2v (z)

y {Qn (z) - Qn (y)) > V (z-y) + inf (y), v (z))

Comme G (rj) G (;u*) 0, on a v (G (tj)) > 0. Choisissons A réel tel

que
0 < A < inf (a, v (G (rç)))

Soit U {zer^(z) >1}. Nous allons montrer que $ est une
contraction de U. Puisque U est complet il en résultera par le théorème du
point fixe que l'équation (2.7.2) possède une solution dans U et donc que
l'équation (2.7.2) possède une solution u qui est un relèvement de w*.

i) $ envoie U dans lui-même. En effet on a pour v (z) > A

v (<£ (z)) > inf (v G(rj)),v (dz)), v (g„ (z)) > inf (v (G v(z)
2v (z)) >

ii) <t> est une contraction.

v (0 (z) - 0 (y)) > inf (v(z-y)+z,v(z-rj)+inf (u (z), v (y)))

>v(z-y)+ X.

Montrons l'unicité du relèvement. Soit u1 un deuxième relèvement de
u* solution de l'équation (2.7.2). On a u (uj^-rj) > 0. Il est toujours possible
de choisir X de sorte que 0 < X < v (u1-rj).Alorsut - et vérifie
(2.8.2). En vertu de l'unicité du point fixe d'une contraction on a
ul - t] u — t]d'où u.

2.9. Theoreme. Soit a>0. Soit A s & [A] de degré + Supposons
que son image Ä dans k [A] se factorise sous la forme

L'Enseignement mathém., t. XXVI, fasc. 3-4. 20
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(2.9.1) A g*P*

où P* est unitaire de degré n, g* P* premiers entre eux.

1) Il existe un relèvement unique g, P de g*, P* avec deg Q — m,
deg P n, P unitaire, tel que

(2.9.2) A{d) Q(5)P(3).

2) // existe également un unique relèvement Q',Pf vérifiant les mêmes

hypothèses que Q et P tel que

(2.9.3) A{S) P'(3)ß'(3).

3) <9/7 a P/PP - D/DPf, D/DQ ~ D/DQ', D/DA ~ D/DP ® D/DQ.

Démonstration. L'équation (2.9.2) peut s'interpréter comme un système
de m + 77 équations différentielles portant sur les coefficients (d'ordre
<ra — 1 et d'ordre <« — 1 respectivement) de g et de P, et (2.9.1)
représente alors le système réduit. Si désigne l'espace des polynômes à

coefficients dans k de degré < m, l'application tangente réduite ÄQ*} P*

s'interprète comme l'application de x x 0)n_1 dans ^>m+n_1

iU, F)h-> LP* + Q*V,

et cette application est inversible si et seulement si P* et g* sont premiers
entre eux (théorème de Bezout, cf. [Ro] § 1.3).

2.10. Dans le cas a 0, la démonstration précédente n'est plus valable

(car l'application z i-> Bn (ôz) n'est plus forcément une contraction). Il
n'existe pas de démonstration valable pour tous les corps avec dérivation
donnant un résultat du type du théorème 2.9 pour a 0. On donnera
deux exemples de cette situation: l'un dans le cas K k((x)) (cf. 2.5.1),
l'autre dans le cas où K est le corps considéré à l'exemple 2.5.2.

Nous allons établir maintenant un lemme de Hensel du type précédent

/ à
dans le cas K k ((x)) muni de la dérivation ô x — (on a alors

dx

a (id) 0). Nous allons d'abord donner une nouvelle version du théorème
2.8. Soient F, G et Lu définies par les relations (2.7.1), (2.7.2) et (2.7.3).
Nous allons maintenant interpréter Lu comme une m x m matrice à coefficients

dans (9 [d].
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Pour w* g km on définit L„* comme étant la m x m matrice à coefficients

dans k [5] réduite de Lu*. Le z-y-coefficient de Lu* est donc

ôF- s dF-
(tz*,0,0...) + y ——- (m*, 0, 0 ôl.

3Xjy 37,/

Notons que par passage au quotient, ô induit la dérivation triviale sur
le corps résiduel k, il faut donc distinguer entre un opérateur différentiel à

coefficients dans k et l'application qu'il définit dans k. Par contre les

opérateurs différentiels à coefficients dans k commutent entre eux, on peut
donc définir det (Lu*) e k [ô].

2.11. Lemme. Soient % g k [X] et s0 entier tels que n (s) ^ 0 pour tout
s > Sq. Alors 71 (d) réalise une bijection isométrique de la boule {a g k ((x));
v (<a) > s0} sur elle-même.

Démonstration :

C'est évident puisque n (d) I as xs) I n (s) as xs.
S SQ S SQ

2.12. Proposition. Soit K k ((x)) et ô x — Soient F et G
dx

définies par les formules (2.7.1) et (2.7.2). Soit r\ g (F£ et posons n (ô)
det (Lfi g k [ô]. Soit Sq entier >0 tel que pour tout entier s > s0,
71 (s) # 0. Si l'on a v (G (rj)) > s0, il existe un unique u g 0m solution de

l'équation G (u) 0 tel que v(u-rj) > s0.
En particulier soit u* g km solution de G (u*) 0. Soit % (d)

det (Lu*) g k [5]. Si tz ne possède pas de racines entières >0, il existe un
unique relèvement u de u* solution de l'équation G (u) 0.

Démonstration : Notre hypothèse implique en particulier que n (ô) n'est
pas le polynôme nul. Il existe donc une m x m matrice M à coefficients
dans k [5] telle que

MLn tz(Ô)I

où / désigne la m x m matrice identité.
On a donc

MLn — 7t (8)1 xN

où N est une matrice à coefficients dans 0 [d] (ici 0 k [[x]] et x est
l'uniformisante canonique de K).
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Comme dans la proposition 2.8 on considère le développement taylorien
(2.8.1) de G, et l'on voit que l'équation G (u) 0 peut s'écrire, avec
w u — rj9

(2.12.1) 7i(d)w — [MG fi) +xN (w) + MQTJ(w)).

Soit U {z e v (z~rj) ^ s0}. Il est clair que si w e U le second

membre de (2.12.1) appartient aussi à U, et donc si l'on cherche une solution

de 2.12.1 dans U, il est équivalent d'écrire (puisque d'après le lemme 2.11

7i (d) est inversible sur U),

(2.12.2) w <P(w) déf-7i(a)-1(MG(7/)+xiV(w) + MÔ,(w)).

On vérifie facilement comme dans la proposition 2.5 que $ est une
contraction de U, ce qui montre que l'équation (2.12.1) possède une solution

unique.
Pour la deuxième partie de la proposition il suffit de prendre un relèvement

rj quelconque de u* (par exemple rj u*) et de prendre ^0 1.

d
2.13. Théorème. Soit K k ((x)) et ô x — Soit A e 0 [X] de

7 dx
degré m + n. Supposons que son image A dans k [X] se factorise sous la

forme

(2.13.1) Ä g*P*

où P* est unitaire de degré n.

1) Si g* (^É+s) est premier à P* (X) pour tout entier s > 0, il existe

un relèvement unique Qr,P' de g*, P* avec deg g m, degP n,

P unitaire, tel que

(2.13.2) A{8) Ô(3)P(0;).

2) Si P* (X+s) est premier à g* (X) pour tout entier s > 0, il existe

un relèvement unique Q\P' de Q*,P* avec deg g' m, degP' n,

P' unitaire, tel que

A(d) P'(3)g'(3).

3) Si P* (X+s) est premier à g* (X) pour tout s e Z, P, g, Pg'
les polynômes différentiel définis précédemment on a

D/DP ~ D/DPD/DQ ~ D/DQ', D\DA ~ D/DP ®D/DQ
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4) Soit s0 entier >0 tel que pour tout entier s > s0 ß* (^+^) soit

premier à P* (X). S'il existe un relèvement QuP\ de Q*,P* avec

deg ôi degPi unitaire et v (A (d) ~ Qt (d) P± (d), 0) >^0,
a/ors il existe Q,PeD uniques avec deg Q — m, deg P n, P unitaire,
v (P-Pu0) > s0,v (Q - Qu0) > s0 et A QP.

On a un énoncé similaire pour une factorisation A P'ô'.
Les théorèmes 2.9 et 2.13 sont les équivalents du classique lemme de

décompositions pour les modules différentiels dont on trouvera un énoncé

précis dans [Le] § 2.

Démonstration :

1) L'équation (2.13.2) peut s'interpréter comme un système de m + n

équations différentielles portant sur les coefficients (d'ordre < m — 1 et
d'ordre < n — 1 respectivement) de Q et P, et (2.13.1) représente le système
réduit. Il s'agit de montrer que le polynôme n (d), déterminant de LQ*} P*
ne s'annule pas sur les entiers >0.

Or, si l'on note l'espace des polynômes différentiels de degré <ra,
à coefficients dans k ((v)), l'application tangente PQ*jP* s'interprète comme
l'application de ^>m_1 x ^>n_1 dans w+n_1

U(5), V{8))u5)P* + (8) V(3).
Si

n m m—1 n-1
p* I Pi#, Ô* Z q,#, z Ut#, z ^i o i 0 i 0 i 0

on a

m-1 n m n-1 i

up* + q*v z Z uiPjdi+J+Z Z Z
Ï 0 7 0 j 0 7 0 1 0

Nous n'expliciterons pas la matrice de (qui a ses coefficients
dans k[d]) mais nous observerons que si dans cette matrice nous faisons
d 0 alors on obtient la matrice de l'application

U (X), F(X)) i-> U (X) P* (X) + (X) V(X)
U (X) P* (X) + F(X) Q* (X)

dont on a observé dans la démonstration du théorème 2.9 qu'elle était
inversible si et seulement si P* et Q*étaient premiers entre eux.
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En résumé n (0) ^ 0 si et seulement si P* (X) et Q* (X) sont premiers
entre eux.

De la relation

(d + syv= Ê
1 0

valable pour tout v e k ((x)), tout entier i > 0 et s entier, on voit que la
matrice £p*(x)>ô*(x+s) (d) de l'application

m-1 n

(U(d), V(ô))^ U(d)P*(d) + Q*(d + s) V(Ô) E Z uiPjdi+J
i =1 j=0

+ "z «I "z Z
i 0 j 0 Z 0

est ^p#(x),q*(x) (5 +s).
Par conséquent d'après ce qu'on vient de voir, n (s) ^ 0 si et seulement

si P* (Z) et ß* (X+.y) sont premiers entre eux.

Il suffit alors d'appliquer la proposition 2.12.

2) se démontre de même.

3) Supposons qu'on ait P1 Q' Q1P avec dtgP1 < deg P. Si

Pi # 0 (et donc 2i =£ 0) on peut se ramener au cas v (P1? 0) v (Ql9 0)
0. En passant au corps résiduel on obtient P1 2* — Q^P* avec

degPi < degP* et P± # 0 2i ^ 0 ce qui contredit l'hypothèse que
g* et P* sont premiers entre eux.

On applique alors le lemme 2.2.

4) Se démontre comme 1).

2.. 14. Applications.

2.14.1. Soit A e D avec v (A, 0) 0; on a

deg Ä N(A,0).

Si A n'est pas fuchsien, c'est-à-dire si deg Ä < deg A, en appliquant le

théorème 2.12 avec P* Ä et 2* 1, on obtient une factorisation de A
en un opérateur fuchsien et un opérateur totalement irrégulier (cf. 2.5.1),
ce qui nous redonne une démonstration différente du résultat 2.5.1.

2.14.2. Supposons maintenant que k est algébriquement clos de caractéristique

0.

i
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Soit A e D avec v (A, 0) 0, de degré n et supposons A fuchsien.

Alors Ä (qui est le polynôme indiciel de A) est de degré n. Notons X1 Xn

ses racines de telle sorte que si pour i < j Xt — Xj est entier, alors cet entier

est positif. Appliquons le théorème 2.12 avec P* (X) (X-Xf) et

g* c (X~Xn) (X-X2). On aura alors une factorisation A A1P1
où P1 relève P* et A1 relève g*. Par induction sur le degré de A on voit

que l'on al a factorisation A aPn...P1, avec Pt ô — rji, et

- XtExk [M].
On peut retrouver ce résultat de façon différente. Il est bien connu (cf.

[In] § 16.1) que l'équation Au 0 possède une solution formelle u xÄ1 v

avec vek [M]. Alors A se factorise sous la forme A A1P1 avec

D * 5M 7 rr T1Pt o - et I on a Xt + avec ex k I[x]
U U V V

2.15. Nous utilisons les notations du paragraphe 2.5.2. Si L désigne le

corps résiduel de L, alors le corps résiduel de E s'identifie à L(X). Par
d d

passage au quotient la derivation o — sur E donne la dérivation —
dx dx

sur L(X) qui n'est pas triviale. Nous noterons, pour me N, 0>m l'espace
des polynômes différentiels de degré <m à coefficients dans L(X). Nous
notons encore 0 l'anneau de valuation de E.

Théorème. Soit A e 0 [ô] de degré m + n. Supposons que son image
Ä dans L(X) [d] se factorise sous la forme

Ä Q*p*

où P* est unitaire de degré n.
Alors si l'application

(U, F)b> UP* + Q*V

de ^m-3 x &n-1 dans &\n+n-1 est injectivejl existe un relèvement unique
Q,P de Q*p* avec deg Q m, deg P n, P unitaire, tel que A QP.

On trouvera la démonstration dans [Dw] § 6. On montre de plus que si
les coefficients de A sont des éléments analytiques admissibles (cf. §2.5.3)
alors les coefficients de P et g le sont également.
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