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2. LEMMES DE HENSEL

Dans ce paragraphe il est essentiel de supposer que K est complet pour
sa valuation.

2.1. Dans le cas commutatif il existe deux types de lemmes de Hensel.
Une propriété de factorisation d’un polynéme relativement aux valeurs
exceptionnelles qui lui sont associées (pentes du polygone de Newton).
Pour les polynémes différentiels on aura exactement la méme propriété
pour les valeurs exceptionnelles < « (pentes > — «) (corollaire 2.6). Toute
la partie correspondant & ¢ > « sera regroupée en un seul facteur fuchsien
(x-dominant) (théoréme 2.4).

Par ailleurs pour un polynéme a coefficients dans I’anneau de valuation
de K, st par passage au quotient on a une factorisation dans le corps résiduel
en facteurs premiers entre eux, cette factorisation se releéve. Dans le cas des
opérateurs différentiels pour pouvoir passer au quotient il faut d’abord
supposer que la dérivation envoie I’anneau de valuation de K dans lui-
méme, c’est-a-dire que o >0. Si « > 0, la dérivation est triviale sur le
corps résiduel, donc par passage au quotient les polyndmes différentiels
commutent; alors une factorisation en facteurs premiers entre eux se reléve
(théoréme 2.5). Dans le cas « = 0 on ne peut pas obtenir de résultat géné-
ral. Chaque cas d’espéce demande un traitement particulier. Le cas parti-

d
culier K = k ((x)) et = x -, sera traité plus loin (Théoréme 2.13).
X

2.2. LEMME. Soient A, P, Q,P’', Q'€ Dy tels que
()4 = QP =P'Q’
(2) deg P = deg P’ (deg Q = deg Q)

(3) pour tous P,QeD,deg P <degP et PQ = QP entrainent
P=20=0.

Alors  on a D|DP ~ D/DP’', D]DQ ~ D/D(Q’, D/DA ~ D/DP
® D/DQ. (Les isomorphismes étant des isomorphismes de D-modules &
 gauche).

Pour la notion de D-module on renvoit & [Mn].
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Démonstration (MALGRANGE). On considére la suite exacte de D-modules

a gauche
A

0
0 - D/DQ - D/DA — D/DP — 0

ou la premicre fleche (resp. la seconde) est définie par passage au quotient
a partir de la multiplication a droite par P (resp. a partir de I'identité). De
méme on a la suite exacte

ll ul

0 - D/DP' - D/DA - D/DQ’' - 0.

Nous allons montrer que le morphisme ul’ est un isomorphisme de
D/DP’ sur D/DP. Comme ces deux modules sont finis et de méme rang
sur K, 1l suffit de montrer que ul’ est injectif. Or, soit ¢ € D/DP’ tel qu’on
ait uA’ (o) = 0. En relevant ¢ en S e D cela signifie qu’on a SQ’ € DP.
L’ensemble des S vérifiant cette derniére condition est un idéal a gauche
de D contenant P’, et il suffit de montrer que P’ engendre cet idéal. Si
c’était faux, le générateur P de cet idéal serait de degré < deg P’ et I’on
aurait la relation PQ’ = QP, ce qui est incompatible avec (3).

(On montre de méme que u'A est un isomorphisme de D/DQ sur D/DQ’).

Mais alors I’application A’ (uA") ™' est un relévement de u ce qui démontre
la derniere assertion.

2.3. Remarque.

On a observé dans la démonstration précédente que si I’on avait une
factorisation 4 = QP, on identifiait de fagon canonique D/DQ a un sous-
module de D/DA. Réciproquement soit N un sous-D-module du D-module
M = D|/DA. Soit m I'image dans M du polynéme constant 1 de D, c’est
un vecteur cyclique de M et 'on a Am = 0. Soit u I'image de m dans le
D-module quotient M/N; u est un vecteur cyclique de M/N. Si Pe D est
le polynéme différentiel unitaire minimal que annihile u, alors P divise 4
et M/N ~ D/DP. Soit A = QP, D/DQ s’identifie avec le noyau de I’appli-
cation quotient M = M/N, donc D/DQ ~ N. On voit donc qu’il est
équivalent d’étudier la factorisation de 'opérateur A et de rechercher les
sous-modules du D-module D/DA.

2.4. THEOREME. Soit A € Dg. Soit t <a.

1) Il existe Q,Pe Dy avec P t-dominant, deg P = N (A4,t), tels
que A = QP.
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2) (Unicité). Si ’on a une autre décomposition A = Q P vérifiant
les mémes conditions, il existe a # 0 de K tel que Qi = Qa~' et
P, = aP.

3) Il existe Q',P' e Dy avec P’ t-dominant, degP’' = N (4, t),
tels que A = P’ Q.

4) Ona D/DP ~ D/DP’, D/DQ ~ D/DQ’, D/DA ~ D/DP & D|DQ.

Démonstration :

1) Soit A = X a;0'. Posons N = N(4,t). Posons P, = X a; 0.

i=N

On définit P, Q,, R, de Dy par les formules de récurrence
A = QnPn +Rn deg Rn <dean
Pn+1 = Pn + Rn .
Soit A =v(A—Pyt) —v(d4,t). Il résulte de la définition de

N = N(4,t)que A > 0.
Nous allons montrer par induction sur #» que I’on a

(1), P, est t-dominant et v (P,, t) = v (4, t).

(i), v(1=Q, 1) =>4
(iiD), v (R, 1) >0 (4, ) + (n+1)

(iV)n v (Qn+ 1 Qn: t) > (n+2) )"

Remarquons que P, est de degré N et que le coefficient de o~ dans P,
est ay; d’ou

v(P,,t) = inf (v(a,-)+it) = ay + Nt = ipf(v(ai)+it) = v(4,1)

i=N

ce qui montre (7).
Comme P, est --dominant et que ’on a

4—-P,=(1-Q)P +R, degR, <degP,,
il résulte de la proposition 1.12 et de la définition de A que ’on a

U(I—Qoﬁt)>v(A—Poat) '—7)(1)(291:)> A
et V(R,, ) =v(A—P,, 1) >v(A4,1) + A

- ce qui montre (i), et (iii),.
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Comme I’'on a

A = QnPn + Rn = Qn+1Pn+1 + Rn-i—l = Qn+1(Pn+Rn) + Rn+1
d’ou
(1—Qn) Rn = (Qn+1_Qn)Pn + Rn+1 deg Rn+1 < deg Pn

1l résulte de (i), (ii), (ii1), et de la proposition 1.13 que

v(Qn+l_Qn>t) >v(1—Qn>t) + U(Rna t) _U(Pnat)>(n+2)/l>
et U(Rn+1,t)>7}(1—Qn,t) +U(Rn:t)>(n+2)i

ce qui montre (iv), et (iii), ;.
D’apres (i), v (R,, ) > v (4,t) = v (P,, ), donc

U(Pn—l-l)t) = U<Pn:t) = '(')(A,t).

Par ailleurs il est clair que P, est de degré N et que le coefficient de oV
dans P, est ay. Il en résulte. comme pour P,, que P,,; est t~-dominant,
ce qui montre (i), ;.

Enfin d’apres (i), et (iv),

V(1 =Qury, 1) = inf (0(1 = Q,, 1,0 (2 = Qusy, 1)) = 4

ce qui montre (i), ;.

Ceci acheve la démonstration des formules (i), ... (iv),.

On a pour tout ndeg P, = N, deg R, < deg A4, deg O, << deg A— N.
Les relations (iii), et (iv), montrent que les coefficients de R, tendent vers
0 et que les coefficients de P, et O, forment des suites de Cauchy. Comme K
est complet ces suites convergent. Soient P = lim P, et Q = lim Q,. On
aA=lm(Q,P,+R,) = QP.

Enfin il est clair que le coefficient de 0~ dans P est ay. Ceci joint au fait
que v (P, t) = limv (P, t) = v (A4, t) montre que P est f-extrémal et que
degP = N = N(4,1).

2) Effectuons la division euclidienne de P; par P. Comme deg P,
= deg P(=N(4,1))ona

P, =aP +R degR <degP, a€eKk.

Comme P est t-extrémal ceci entraine

N(R,t) < degR <degP = N(P,1).
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De la relation 4 = QP = QP on tire
QR =(Q,—Qa)P.
Comme 7> « on a en premier lieu
N(Qq,t) = N(A,1) = N(Py,1) =0
et par conséquent
N (Q; R, 1) = N(Q;, ) +N (R, t)= N (R,7) = N (Q,— Qa, 1) + N (P, 1).
Cette relation jointe a I'inégalité N (R, v) < N (P, t) entraine
N(R,t) = N(Q;—Qa,t) = — ©

cest-a-dire R = Q, — Qa = 0 ce qui démontre 2) .
3) Cela se fait comme en 1) en changeant I'ordre des produits.
4) Supposons qu’on ait PQ’ = QP avec deg P < deg P.
On a comme précédemment N (Q’, ) = O et
N(P,f) < degP <degP = N(P,1)

ce qui, joint a
N(P,t) + N(Q',t) = N(Q,1) + N(P, 1)

entraine P = Q0 = 0. On applique alors le lemme 2.2.

2.5. Exemples.
d
2.5.1. Soit K = k((x)) muni de la dérivation 0 = o (cf. §1.14). En
X

appliquant le théoréme précédent avec 1 = o« = —1, on obtient une décom-
position de 'opérateur différentiel 4 en un facteur fuchsien P et un facteur

O totalement irrégulier, c’est-a-dire qui ne posséde pas de facteur fuchsien
de degré non nul.

2.5.2. Soit L un corps valué ultramétrique. L’application P+ v (P, 0)
définie sur L [X] s’é¢tend a L (X) et définit une valuation sur L (X) appelée
valuation de Gauss. Le complété de L (X) pour cette valuation sera noté

i d
E (cf. [Dw] pour plus de détails). La dérivation 0 = — définie sur L (X)
, %
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est continue et s’étend & £. On a o (0) = 0. Le théoréme précédent s’applique
donc pour ¢ < 0. (Le cas t = 0 a été considéré dans [Ro]).

2.5.3. Remarquons que les résultats du § 1 sont encore valables si les
coefficients des opérateurs différentiels sont pris non pas dans un corps
mais dans un anneau valué. Dans la proposition 1.13 pour pouvoir effectuer
la division euclidienne il faut bien sir supposer que le coefficient du terme
de plus haut degré de P est inversible dans I’anneau considéré.

En particulier la démonstration du théoréme 2.4 reste valide si I'on
suppose que le coefficient ay de 'opérateur A4 est inversible.

Cette remarque nous sert dans la situation suivante:

Soit L un corps valué ultramétrique complet algébriquement clos. Soit
S un sous-ensemble de L. Si f, définie sur S, est la limite uniforme sur S de
fractions rationnelles sans poles dans S on dit que f est un élément analy-
tique sur S. Supposons que S soit une union de classes résiduelles de L;
alors en utilisant les propriétés du paragraphe 1.3 on montre facilement
que pour une fraction rationnelle f sans poles dans S, inf o (f(x))

xeS

= v (f, 0). Il en résulte que ’anneau H (S) des ¢éléments analytiques sur .S
s’identifie 2 un sous-anneau fermé de E, défini en 2.5.2. On dit que fe E
est un élément analytique admissible (cf. [Dw]) s’il existe un sous-ensemble
S formé de toutes les classes résiduelles sauf un nombre fini (on dira que S
est standard) tel que f soit un élément analytique sur S. L’ensemble des
¢léments analytiques admissibles forme un sous-corps H de E qui n’est pas
complet pour la valuation. Mais pour chaque a € H, il existe un ensemble
standard S tel que a € H (S) et que a ne s’annule pas dans S (cette derniere
condition peut €tre réalis€ée car un ¢lément analytique sur un ensemble
standard n’a qu’un nombre fini de zéros). Alors ’anneau H (S) est complet

d

et a est inversible dans H (S). Pour la dérivation 0 = . de H, H(S) est
X

stable. Le théoréme 2.4 est donc encore valable pour les opérateurs a

coefficients dans H bien que H ne soit pas complet.

2.6. COROLLAIRE. Soit A€ Dy et soit t < a.

1) Il existe Q,Pe Dk, avec P t-extrémal et degP = N(4,t)
—n(A,t), telsque A = QP.

2) On a également une factorisation A = P'Q" ou P’ vérifie les mémes
conditions que P.

3) Ona D/DP ~ D/DP', D/|DQ ~ D/DQ’, D|DA ~ D/DP & D/DQ.
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Démonstration. D’aprés le théoréme 2.4 il existe L, B € Dy, avec B t-domi-
nant et N (B,t) = N(4,1¢) tels que 4 = LB.

Alors N (L, 1) = 0, donc N(L,s) = 0 pour s >t et n (L, s) = 0 pour
s > t. Par conséquent pour s > ona

N(B,s) = N(4,s) et n(B,s) =n(4,s).

Pour s assez voisin de 7,5 > 7, on a n (B, t) = N (B, s). Pour un tel s
il existe M, P € Dy, M s-dominant, tels que B = MPet N (M, s) = N (B, s).

On pose Q = LM. On a donc A = QP. Par ailleurs deg B = N (A4, 1),
deg M = N(B,s) =n(B,t) = n(4,t), et donc degP = N(A4,1)
—n(4,1).

Comme t < 5, N(M,t) = n(M, t) = deg M, d’ou

N(P,t) = N(B,f) = N(M,t) = N(4,t) —n(4,1)
n(P,t) = n(B,t) —n(M,t) =0

ce qui montre que P est z-extrémal.

2) Se démontre de méme et 3) se démontre comme le 4) du théoréme 2.4.
2.7. Notons @ I’anneau de valuation de K. Supposons que « (0) > O.
Alors la dérivation envoie ¢ dans son idéal maximal et par passage au
quotient induit la dérivation triviale sur le corps de restes k de K.

Nous noterons ¢ [0] 'anneau des ¢éléments de Dy dont les coefficients
sont dans 0. Soit A = Xa,0'e®[0] et A = X a;0" ek [0] son image.
Supposons qu’on ait une factorisation 4 = Q*P* dans k [0], nous cherchons
si cette factorisation se reléve dans O [0]. La démonstration classique de ce
lemme de Hensel dans le cas commutatif (cf. par exemple [Am] 2.5) ne se
généralise pas au cas des opérateurs différentiels. Nous allons donc suivre
la méthode de [Dw] § 6 qui interpréte I’équation 4 = QP en un systéme
d’équations différentielles non linéaires portant sur les coefficients de QO
et P. Nous allons donc commencer par étudier & quelles conditions un
systétme d’équations différentielles non linéaires ayant une solution dans
le corps résiduel a une solution dans 0.

Soit un systéme différentiel non linéaire de m équations a m inconnues a
coefficients dans @. Précisément posant

X=X, 0 X)), Y=Y 1. Y )1 <i<s

s

et X*= X' ... X.™ pour pe N™ soit
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(2.7.1) F(X,Y,..,Y) = Y C

#,(vg)

SXEYSL Y

us (v

avec u, v; € N™, la somme étant finie, et avec C, , 5 € O™
Nous cherchons une solution dans 0™ de I’équation

(2.7.2) G(X) = 4o F(X,0(X),...,0"(X)) = 0.

Pour u € O nous appelons application tangente & G en u, 'application
L, de 0™ dans lui-méme définie par

(2.7.3) L,(z) = L,(zy,...,2,) = ii z; ;—;l (u, 0 (u),...)

Nous écrirons
L,(z) = A,(2) + B,(0(2)

m

ou 4,(z) = 2 z; — (u, ...). Nous utiliserons la méme notation A4, pour
i=1 i
désigner ’application de O™ dans lui-méme et la matrice qui lui est associée.
Par passage au quotient I’équation (2.7.2) devient

(2.7.4) G(X) = Z Cﬂ, (0) X” = 0
n

dont I’application tangente en u* € k™ est A,. définie par

m

(2.7.5) Ap(z) = Y z j—;(u*)

i=1

2.8. PROPOSITION. Soit o > 0. Soient F et G définies par les formules
(2.7.1) et (2.7.2). Soit u* € k™ une solution de l’équation réduite G (u*) = 0.
Supposons que [’application tangente réduite A, est inversible dans k™.
Alors u* se reléve de facon unique en une solution ue O™ de l’équation
G (u) = 0.

Démonstration. Soit n un relévement de »* dns 0™. Considérons le dévelop-
pement taylorien de G autour de 7

(2.8.1) Gn+X) =G + 4,(X) + B,(6(X)) + Q,(X). :
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On a A, = A,. D’aprés notre hypothése det (4,.) # 0, ceci signifie
que det (4,) est une unité de ¢ donc que 4, est inversible dans GL,, (0).

Posons # = n + w. Alors I’équation G (1) = 0 équivaut a

(2.8.2) w= —A, " (G +B,(0(W)+Q, (W) = g D(W).
On munit K™ de la norme (exprimée sous forme additive) définie pour
X = (x4, ..., x,) € K™ par v (X) = inf v (x,).

Notons que, comme Q, ne contient que des termes au moins quadra-
tiques en la variable et ses dérivées on a pour tous z, y € O™

v(Q,(2)) > 2v(z)
v(0,(2) =0, () =v(z—y) + inf (v(),2(2)) .
Comme G (1) = G (u*) = 0, on a v (G (1)) > 0. Choisissons A réel tel

que
0 < A < inf («,9 (G (1)) .

Soit U = {ze€0™;v(z) >4}. Nous allons montrer que ¢ est une
contraction de U. Puisque U est complet il en résultera par le théoréme du
point fixe que ’équation (2.7.2) posséde une solution dans U et donc que
I’équation (2.7.2) posséde une solution u qui est un relévement de u*.

1) @ envoie U dans lui-méme. En effet on a pour v (z) > A
v(@(2)) > inf (v(G (1)), v(B,(92)), v(Q,(2)) > inf (v(G(n)), v(2) + «,
20(2)) > 4.
11) @ est une contraction.

v(2(2) =2 () = inf (v(z —y) + e, v (z =) +inf (v (2), v (3)))
>v(z—y) + 4.

Montrons I'unicité du relévement. Soit #; un deuxiéme relévement de
u* solution de I’équation (2.7.2). On a v (u; —n) > 0. Il est toujours possible
de choisir 4 de sorte que 0 < A < v (u;—n). Alors u, — ne U et vérifie
(2.8.2). En vertu de l'unicité du point fixe d’une contraction on a
uy —n =u—ndouu = u

2.9. THEOREME. Soit o« > 0. Soit A€ O [X] de degré m + n. Supposons
que son image A dans k [X] se factorise sous la forme

L’Enseignement mathém., t. XXVI, fasc. 3-4. 20
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(2.9.1) A = Q*p*
ou P* est unitaire de degré n, Q* et P* étant premiers entre eux.

1) Il existe un reléevement unique Q,P de Q*, P* avec deg Q = m,
deg P = n, P unitaire, tel que

(2.9.2) A(9) = Q(3)P(9).

2) 1l existe également un unique relévement Q', P' vérifiant les mémes
hypothéses que Q et P tel que

(2.9.3) A(d) = P'(d) Q' (9).

3) Ona D|DP ~ D/DP’', D/DQ ~ D|/DQ’, D/DA ~ D/DP @& D|DQ.

Démonstration. L’équation (2.9.2) peut s’interpréter comme un systéme
de m + n équations différentielles portant sur les coefficients (d’ordre
<m — 1 et d’ordre <{m — 1 respectivement) de Q et de P, et (2.9.1)
représente alors le systéme réduit. Si £, désigne I’espace des polyndmes a
coefficients dans k de degré < m, l'application tangente réduite Ay« p«
s’Interpréte comme l'application de £,,_; X £,_, dans 2,,,,_

(U, V)= UP* + Q*V,

et cette application est inversible si et seulement si P* et O* sont premiers
entre eux (théoreme de Bezout, cf. [Ro] § 1.3).

2.10. Dans le cas « = 0, la démonstration précédente n’est plus valable
(car l'application z +— B, (0z) n’est plus forcément une contraction). Il
n’existe pas de démonstration valable pour tous les corps avec dérivation
donnant un résultat du type du théoréme 2.9 pour « = 0. On donnera
deux exemples de cette situation: I'un dans le cas K = k ((x)) (cf. 2.5.1),
I’autre dans le cas ol K est le corps considéré a ’exemple 2.5.2.

Nous allons établir maintenant un lemme de Hensel du type précédent

dans le cas K = k((x)) muni de la dérivation 0 = xd—(on a alors
X

« (0) = 0). Nous allons d’abord donner une nouvelle version du théoréme
2.8. Soient F, G et L, définies par les relations (2.7.1), (2.7.2) et (2.7.3).
Nous allons maintenant interpréter L, comme une m X m matrice a coeffi-
cients dans O [0].
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Pour u* € k™ on définit L. comme étant la m X m matrice a coeflicients
dans k [0] réduite de L .. Le i-j-coefficient de L. est donc

OF, s OF,
L w*,0,0... L (u*,0,0..)0".
7, ¢ ) + IZZI 2%, (u )

J

Notons que par passage au quotient, ¢ induit la dérivation triviale sur
le corps résiduel k, il faut donc distinguer entre un opérateur différentiel a
coefficients dans k et I’application qu’il définit dans k. Par contre les opé-
rateurs différentiels & coefficients dans k& commutent entre eux, on peut
donc définir det (L) € k [0].

2.11. LeMME. Soient nek[X] et s, entier tels que 7 (s) # O pour tout
5 > 5o. Alors m () réalise une bijection isométrique de la boule {a € k ((x));
v(a) =50} sur elle-méme.

Démonstration :

C’est évident puisque 7 (0) ( X a,x%) = 2 7w (s)a, x°.

S = s0 s = sg

d
2.12. PropoSITION. Soit K = k((x)) et 0 = X Soient F et G
X

définies par les formules (2.7.1) et (2.7.2). Soit neO% et posons m (9)
det (L) ek [0]. Soit s, entier >0 tel que pour tout entier s > s,,
n(s) #0. Silona v (G () > 5o, il existe un unique ue O™ solution de
[’équation G (u) = 0 tel que v (u—n) > s,.

En particulier soit u*ek™ solution de G u*) = 0. Soit = (d) =
det (L) €k [0]. Si © ne posséde pas de racines entiéres >0, il existe un
unique relevement u de u* solution de [’équation G (1) = 0.

Démonstration : Notre hypothése implique en particulier que = (0) n’est
pas le polynéme nul. Il existe donc une m X m matrice M A coefficients
dans k [0] telle que

ML, = n(0)I

n

ou 7 désigne la m X m matrice identité.
On a donc

ML, —n(3)I = xN

ol N est une matrice a coefficients dans 0 [0] (ici 0 = k [[x]] et x est
. Puniformisante canonique de X).
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Comme dans la proposition 2.8 on considére le développement taylorien
(2.8.1) de G, et 'on voit que I’équation G (u) = 0 peut s’écrire, avec
w=u-n,

(2.12.1) (0w = — (MG (n)+xN(w)+MQ,(w).

Soit U = {ze0™;v(z—n) >s0}. Il est clair que si we U le second
membre de (2.12.1) appartient aussi & U, et donc si ’on cherche une solu-
tion de 2.12.1 dans U, il est équivalent d’écrire (puisque d’apreés le lemme 2.11
7 (0) est inversible sur U),

(2.12.2)  w = @ (W) = g — () (MG () +xN (w)+MQ, (W) .

On vérifie facilement comme dans la proposition 2.5 que @ est une
contraction de U, ce qui montre que 1’équation (2.12.1) posséde une solu-
tion unique.

Pour la deuxiéme partie de la proposition il suffit de prendre un releve-
ment 7 quelconque de u* (par exemple # = u*) et de prendre s, = 1.

d
2.13. THEOREME. Soit K =k ((x)) et 0 = xd— . Soit AeO[X] de
X

degré m + n. Supposons que son image A dans k [X] se factorise sous la
forme

(2.13.1) A = Q*p*

o P* est unitaire de degré n.

1) Si Q* (X+s) est premier a P* (X) pour tout entier s > 0, il existe
un relévement unique Q',P' de Q*, P* avec deg Q = m, deg P = n,
P unitaire, tel que

(2.13.2) A() = Q(B)P ().

2) Si P*(X+s) est premier a Q* (X) pour tout entier s > 0, il existe
un relévement unique Q', P' de Q*, P* avec deg Q' = m, deg P’ = n,
P’ unitaire, tel que

A(0) = P'(9)Q'(9).

3) Si P*(X+s) est premier a Q*(X) pour tout seZ,P, Q,P', Q'
étant les polynémes différentiel définis précédemment on a

D/DP ~ D/DP’, D|DQ ~ D/DQ’, D/DA ~ D/DP & D/DQ .
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4) Soit s, entier >0 tel que pour tout entier s > s, Q* (X+s) soit
premier @ P*(X). S'il existe un relevement Q,P; de Q% P* avec
deg O, = m, deg P, = n, Py unitaire et v (A4 (0) — Q4 (0) P (9), 0) > s,
alors il existe Q, P e D uniques avec deg Q = m, deg P = n, P unitaire,
V(P~P1,0) >50,0(Q~0Q1,0) =50 ef 4= QP.

On a un énoncé similaire pour une factorisation A = P'Q’.

Les théorémes 2.9 et 2.13 sont les équivalents du classique lemme de
décompositions pour les modules différentiels dont on trouvera un énoncé
précis dans [Le] § 2.

Démonstration :

1) L’équation (2.13.2) peut s’interpréter comme un systéme de m + n
équations différentielles portant sur les coefficients (d’ordre <m — 1 et
d’ordre <<n — 1 respectivement) de Q et P, et (2.13.1) représente le systéme
réduit. 1l s’agit de montrer que le polyndme = (0), déterminant de Ly« ps
ne s’annule pas sur les entiers >0.

Or, si 'on note £,,1’espace des polynémes différentiels de degré <<m,
a coefficients dans & ((x)), 'application tangente L o+, px S’Interpréte comme
Papplication de #,,_{ x #,_, dans 2, ,,_

(U0, V(@) U () P*(d) + 0*(d) V(9).

Si
n m m—1 n—1
P* = Z piaia Q* = Z Qiai: U = Z u’iai: V = z viai ’
i=0 i=0 i=0 i=0
on a

n—1 i

m—1 n m
UP* +Q*V = Y Y up;d™/+ Y g, I (;) 0" (v)) 071
i=0 j=0 Jj=0 J=0 1=0

Nous n’expliciterons pas la matrice de Lp« o« (qui a ses coefficients
dans k [0]) mais nous observerons que si dans cette matrice nous faisons
0 = 0 alors on obtient la matrice de I’application

(UX), V(0) = U(X) P*(X) + 0* (X) V(X)
= UX)P*(X) + V(X) 0* (X)

dont on a observé dans la démonstration du théoréme 2.9 qu’elle était
~ inversible si et seulement si P* et Q* étaient premiers entre eux.
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En résumé = (0) # O si et seulement si P* (X) et Q* (X) sont premiers
entre eux.
De la relation

(0 +95)v = _z (D) (9 +5) (v) 0!

valable pour tout v ek ((x)), tout entier i >> 0 et s entier, on voit que la
matrice L ps (x), g+ (x+5s) (0) de 'application

m—1 n
(U@, V@)~ U@P*@0) +0* @+ V(@) = § % upd™
n—1 n—1 i J=0
T -Z’o % 'Z’O IZO (;.)(a_*-s)l(vj) oIt

est Lp* (X), Q*(X) (5 + S).

Par conséquent d’aprés ce qu’on vient de voir, 7 (s) # O si et seulement
si P* (X) et O* (X+5) sont premiers entre eux.

Il suffit alors d’appliquer la proposition 2.12.

2) se démontre de méme.

3) Supposons quon ait P; Q' = Q, P avec degP; < degP. Si
P, # 0 (et donc Q; # 0) on peut se ramener au cas v (P, 0) = v (Q,, 0)
= 0. En passant au corps résiduel on obtient P; Q* = Q, P* avec
deg P, < deg P* et P; # 0Q,; # 0 ce qui contredit I’hypothése que
Q* et P* sont premiers entre eux.

On applique alors le lemme 2.2.

4) Se démontre comme 1).

2.14. Applications.
2.14.1. Soit A€ D avecv (4,0) = 0; on a

deg A = N(4,0).

Si A n’est pas fuchsien, c’est-a-dire si deg A < deg A4, en appliquant le
théoréme 2.12 avec P* = A et Q* = 1, on obtient une factorisation de 4
en un opérateur fuchsien et un opérateur totalement irrégulier (cf. 2.5.1),
ce qui nous redonne une démonstration différente du résultat 2.5.1.

2.14.2. Supposons maintenant que k est algébriquement clos de caracté-
ristique 0.
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Soit Ae D avec v(4,0) = 0, de degré n et supposons A4 fuchsien.
Alors A (qui est le polynome indiciel de 4) est de degré n. Notons 4 ... 4,
ses racines de telle sorte que si pour i < j A; — A; est entier, alors cet entier
est positif. Appliquons le théoréme 2.12 avec P*(X) = (X—4Ay) et
0% = c(X—41,)...(X—21,). On aura alors une factorisation 4= 4; P,
ou P, reléve P* et A, reléve Q*. Par induction sur le degré de 4 on voit
que Pon al a factorisation 4 =aP,..P;, avec P, =0 —n; et
n — Aexk [[x]].

On peut retrouver ce résultat de fagon différente. Il est bien connu (cf.
[In] § 16.1) que I’équation Au = O posséde une solution formelle u = x*1 v
avec v ek [[x]]. Alors 4 se factorise sous la forme 4 = 4, P, avec

0w ot Ton a 0(u) _ i+ 8_(7)2 — é@ ex k [[x]].
u U v ¢

P, =0

2.15. Nous utilisons les notations du paragraphe 2.5.2. Si L désigne le
corps résiduel de L, alors le corps résiduel de E s’identifie & L(X). Par

: . d L
passage au quotient la dérivation ¢ = — sur E donne la dérivation s
X X

sur L(X) qui n’est pas triviale. Nous noterons, pour m € N, 2, I'espace
des polynoémes différentiels de degré <Cm a coefficients dans L(X). Nous
notons encore @ 'anneau de valuation de E.

THEOREME. Soit A€ 0 [0] de degré m + n. Supposons que son image
A dans L(X)[0] se factorise sous la forme

Z=Q*P*

o P* est unitaire de degré n.
Alors si I’application

(U, V)~ UP* + Q*V

de Py X P,y dans P, ., , estinjective,il existe un relévement unique

Q,P de Q*P* avec deg Q = m,degP = n, P unitaire, tel que A = QP.

On trouvera la démonstration dans [Dw] § 6. On montre de plus que si

les coeflicients de A sont des éléments analytiques admissibles (cf. §2.5.3)
- alors les coefficients de P et Q le sont également.
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