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1. FONCTION DE VALUATION D’UN POLYNOME DIFFERENTIEL

1.1. Soit K un corps valué ultramétrique complet muni d’une dérivation
5. On note v la valuation de K et « (9) (ou « si aucune confusion n’est a
craindre) le nombre
«(0) = inf w(0(a) —v(a).
acK,a#0

On suppose dorénavant que « (d) > — co; cecl signifie que la dérivation
est continue. La dérivation est triviale si et seulement si « = + oo0.

On note Dy (ou D si aucune confusion n’est & craindre) I'anneau des
opérateurs différentiels & coefficients dans K, i.e. 'ensemble des sommes

finies P = X a; &' (¢,eK) muni de ’addition évidente et de la multiplication
définie par 00’ = 0'*J, da = ad + 0 (a).

1.2. Pour tout teR = RU {— 0, +0} et P = Xa;0°e Dg on pose

On note N (P, t) (resp. n (P, t)) le plus grand (resp. le plus petit) entier i
tel que v (a;) + it = v (P, t).

Si P est le polyndme nul on pose, pour tout ¢, v (P,t) = + o0 et
N(P,t) = n(P,t) = — 0.

La fonction ¢+ v (P, t) est appelée la fonction de valuation de P. Cest
une fonction continue, concave, affine par morceaux. Son graphe est appelé
le polygone de valuation de P. 1l est clair que N (P, t) (resp. n (P, t)) est la
dérivée a gauche (resp. a droite) de v (P, #). Ona pour toussetzdeR, ¢ < s

NO>n({)>N(@G)>=n(s).

On dit que reR est une valeur exceptionnelle (pour P) si N (P, t)
# n (P, t). les valeurs exceptionnelles pour P sont en nombre fini.

Pour des raisons qui apparaitront au § 1.8, on considére que la fonction
v (P, t) et la fonction N (P, t) ne sont définies que pour ¢t < « () et que la
fonction # (P, t) n’est définie que pour ¢ < « (0).

1.3. Propriétés de la fonction de valuation dans le cas commutatif.

Nous allons rappeler les principales propriétés de la fonction de valuation
dans le cas commutatif. Nous utiliserons certaines de ces propriétés par la
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suite. Nous donnons une idée des démonstrations de ces propriétés. On
trouvera les démonstrations détaillées par exemple dans [Am].

1.3.1. Soit Pe K [X], soit x # 0 de K. On a v (P (x)) >v (P, v (x)) et
on a I’égalité si v (x) n’est pas exceptionnel pour P. (C’est évident).

1.3.2. On déduit facilement de 1.3.1 que si la valuation de K est dense
on a pour tout teR, v (P,¢) = inf v(P (x)), ce qui relie la fonction de

v(x) >t
valuation a la norme de la converge)nce uniforme.
Pour ¢tablir les propriétés de la fonction de valuation on peut toujours
supposer, quite a considérer un surcorps de K, que la valuation de K est
dense, ce que nous ferons désormais.

1.3.3. Pour tous P, Qe K [X] et tout e R,
v(PQ,1) =v(P, 1) +v(Q,0).

D’aprés 1.3.1 c’est évident lorsque ¢ n’est exceptionnel ni pour P ni pour
Q ni pour PQ et que ¢ appartient au groupe des valeurs de K. Par continuité
la propriété s’étend a R.

1.3.4. Par dérivation on déduit de 1.3.3 que
N(PQ,n) = NP, 1)+ N(@Q,n) et n(PQ,1) =n(P,1) +n(Q,1).

1.3.5. En décomposant P en facteurs du premier degré dans la cléture
algébrique K de K, on déduit facilement de 1.3.4 que

N (P, t) est le nombre de zéros de P dans K*¢ de valuation > ¢
n (P, t) est le nombre de zéros de P dans K de valuation > ¢
N (P, t) — n (P, t) est le nombre de zéros de P dans K de valuation .

Les valeurs exceptionnelles pour P sont donc les valuations des zéros de P
dans K.

1.3.7. Soit PeK[X] et soit neK. Alors pour t <<v(y) on a
v(P(X+n),t) =v(P(X),t). Cela se montre en utilisant 1.3.2 et en
remarquant que, pour ¢ <<v (), les disques {XeK,v(X+n) > t} et
{XeK,v(X) >t} coincident.

1.4. Bien que nous ne l’utiliserons pas par la suite, nous allons introduire
le polygone de Newton d’un opérateur différentiel afin de faire le lien avec
les travaux d’autres auteurs.
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Le polygone de Newton de P = X a; 0' € Dy est la frontiére de I’enve-
loppe supérieure convexe des points (i, v (a))) e R%. Notons Nw (P, t) la
fonction dont le graphe est le polygone de Newton de P. Les fonctions
—v(P,t) et Nw(P,t) sont mises en dualité par une transformation de
Legendre (cf. [La] § 1.10 pour plus de détails). En particulier les valeurs
exceptionnelles pour P sont les pentes des c6tés de son polygone de Newton
changées de signe.

Comme nous ne considérons la fonction de valuation que dans ’inter-
valle (— o0, «]; nous ne conservons que les c6tés du polygone de Newton
de P de pente > — a.

1.5.  Addition.

PROPOSITION. Soient P et Q€ Dg. On a pour tout t

v(P+Q,t) > inf (v(P,1),v(Q,1).

On a égalité si v(P,t) #v(Q,t) ou si N(P,t) # N(O,t) ou si
n(P,t) # n(Q,1).

C’est évident.
1.6.  Multiplication.

Les propriétés que nous allons établir dans ce paragraphe et les suivants
montrent que, pour 7 <L« et moyennant un terme correctif, du point de
vue de la fonction de valuation tout se passe comme si la dérivation commu-
tait avec la multiplication par les éléments de K.

PROPOSITION. 1) Soient P (X), Q (X)eK[X] et soient P (0), Q (9)
les opérateurs différentiels associés. Soit R (X) = P (X) Q0 (X)eK[X]
et soit R (0) I'opérateur différentiel associé. On a pour tout t <

v(R(a)—-P(a)Q(a),t)>v(P,t) +v(Q,1) +a —t.

2) Soient P, Q € Dy. Pour t <da ona
v(PQ,1) =v(P,1) +v(Q,1)
N(PQ,t) = N(P,t) + N(Q,1).

Pour t < o ona

n(PQ,1) = n(P,1) + n(Qr).
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Démonstration :
1) Vérifions le pour P (X) = X'et Q(X) = a.On a
adt —da = — Y (j)d(a)od
j=1
d’ol pour ¢t <«
v(ad'—d'a,t) > inf (v(a)+ju+(i—j)t) =v(a) +it +oa —¢.
i1

Soient maintenant P (X) = X a; X'et Q(X) = 2b; X/.On a

J

R(@® —P@Q@) = Y ay(bo'—0b,)e .

i, J
Par conséquent, utilisant 1.5, on obtient
v(R(0)—P(3)Q(0),t) > inf (v(a)+v (b)) +it+jt+ua —1)
i, j
= inf (v(a) +it) + inf (v(b)) +jt) + o — ¢
i Jj

ce qui termine la démonstration.

2) D’aprés 1.3.3 on a v(R,t) =v(P,t) +v(Q,t). Pour t < a la
relation annoncée s’en déduit grace a 1) et a la proposition 1.5. Le cas
t = o s’obtient par continuité.

1.7. Adjonction.
Soit P = X a; 0" € Dg. Son adjoint est I'opérateur P* = X (—1)! 6’ a,
cf. [In] (5.3). On voit comme dans la proposition précédente que I'on a

pour ¢ < o
v(P*,1) = v(P,1).

1.8. La proposition 1.6. 2) n’est plus vraie pour ¢ > «a. En effet soit
ack, avec 0(a) # 0. Soit P = 0, Q = a; ona PQ = ad + 0 (a) et donc
pour ¢ > v (0 (a)) — v (@) on aura

v(PQ,1) = inf (v(d(a)),v(a)+1t) =v(d(a) #v(P,t) +v(Q,1)
=v(a) +t.
Cest pour cette raison qu’on considére que la fonction de valuation
v (P, t) n’est définie que pour ¢ <a. On notera que, quelle que soit la

représentation de 1'opérateur Pe Ky, P = X a; 0'b;, on a toujours pour
t <a,v(P,t) = inf (v(a) + v (b)) + ir). *
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1.9. Homothétie.

PROPOSITION. 1) Soit P (X)eK[X] et soit P(0) [’opérateur diffé-
rentiel associé. Soit € € K. Notons R(X) = P((X)e K [X] et soit R (0)
I’opérateur différentiel associé. Pour t <o ona

v(R(O)—P(D), 1) =>v(P,t+v(d) + o« — 1.
2) Pour t < a ona

v(P(d),1) = v(P(0),t+v(9).

Pour éviter toute ambiguité indiquons que si P (9) = X a; 9", alors
R@) = ZXa,E 0" et P(ED) = X a; (£0)".

Démonstration :

1) Vérifions ’assertion pour P (d) = 0°. On fait une récurrence sur i
Pour i = 1 c’est vérifié¢ puisque R (0) — P (£0) = 0.

Posons &' 0° — (£0)' = Q, (9).

Alors Q;11(0) = £0Q;(0) —id(&) & d"

Notre hypothése de récurrence est
0(Q;(0),1) =i (&) +it + o —t.

En appliquant 1.5 et 1.6 on obtient a 'ordre i + 1

v(Qi+1 (), t) > inf (v (£3Q; (9), 1), (i + D v (&) + o + i)
=(@(+Do(&) +@(+Dt +a—t.
Soit maintenant P (X) = Xa; X. On a R(9) — P (&0) = Z a; 0;(9).
En tenant compte de 1.5 on obtient donc l
v (R () —P (&), 1)> inf (v (a;) +i(t+v (&) + o —1)

=v(P(0),t+v(&)) + o« — ¢,

2) Dans le cas commutatif on a v (R, t) = v (P, t+v (f)), cela se voit
facilement en appliquant 1.3.2. Alors en appliquant 1) et la proposition 1.5

on obtient la relation annoncée pour ¢ < a. Le cas ¢ = « s’en déduit par
continuité.
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1.10. Remarque.

Dans le cas ou la dérivation n’est pas triviale, la proposition précédente
suggere d’associer au polyndme différentiel P (0) la fonction

w(P(9),1) = v(P(0),t+x(d))

définie pour ¢ < 0. Cette fonction est liée de fagon plus intrinséque a
Iopérateur différentiel et ne dépend pas de la dérivation choisie pour le
représenter. En effet, soit £ e K, &€ # 0, et considérons la dérivation 6 = &o.
Ona a(d) = a (0) + v (&). Maintenant 'opérateur différentiel P (0) est
représenté & I’aide de la dérivation 6 par Q (6) = P (£~'0). On aura donc
griace a la proposition 1.8, pour ¢ <0

w(Q(9),1) = v(Q(9),t+a(d) = v (P(d),t~v(&)+a(d)+v (L)
= w(P(9),1).
Une telle normalisation n’est évidemment pas possible dans le cas
commutatif (dérivation triviale).
Pour garder notre exposé aussi proche du cas commutatif que possible

nous utiliserons la fonction v (P, ) et non la fonction w (P, ¢), préférant,
quand cela sera nécessaire, choisir une dérivation 0 telle que « () = 0.

1.11. La fonction de Gerard-Levelt.

Soit k un corps et soit K = k ((x)) muni de sa valuation x-adique. Consi-
d :
dérons sur K la dérivation ¢ = x e Onaoa(d) =0.S51P=2a;d e Dy,
X

P d’ordre m, on voit facilement, compte tenu de la proposition 1.8, que la
fonction p, (P) de Gerard-Levelt introduite par Ramis [Ra] a la suite de
Gerard-Levelt [Ge] est liée a la fonction de valuation par la relation

p,(P) =v(a,) —mk —v(P, —k) k>0.

| Le polygone de Newton 2% (P) considéré par Ramis [Ra] puis Mal-
grange [Ma] est le polygone de Newton de P prolongé par un c6té de
 pente 0 pour remplacer les éventuels cotés de pente <O que I'on doit
~ supprimer (cf. § 1.4).

|

- 1.12.  Translation.

ProrosiTION. 1) Soit P (X) e K[X] et soit P(0) ['opérateur diffé-
- rentiel associé. Soit ne K. Posons R(X) = P(X+n)eK[X]. On a pour
| ¢ <inf (¢, v ().
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v(R(@)—P(@—l—n},t)>v(P(6),t) + o —t.
%) Pour t < inf (a,v (1)) ona
v(P(8+n),1) =v(P(d),1).
Siv(n) <o ona
n(P(0+n),v(n) = n(R,v(n)).

Démonstration :

1) Vérifions le pour P (0) = 0. On fait une récurrence sur i. Pour
i = 0 c’est vérifié puisque R () — P(0+n) = 0.

Posons X (/077 — (@+n)' = 0,(9).
j =0

J
i

Alors Qyr4 (0) = (0+n) Q;(9) — _21(§)j5 (myn=* o'

J:

Notre hypothése de récurrence est
v(Q; (D), 1) =it +a—t si 1< inf (o, v (1)) .
En appliquant 1.5 et 1.6 on obtient a I'ordre i + 1

v (Qi41(0), 1) > inf (v(Q;(9), 1) + inf [v (n), 7], inf [a+jo(n)
1=j =i
+ (=)
>it4+a=i(+1)+a—t si t<inf(a,v().
Soit maintenant P (X) = X g X.OnaR@®) —P@+n) = Z a; Q;(0).

i
Par conséquent, en utilisant 1.5, on obtient pour ¢ < inf (, v @)

V(RO —P(0+mn),1) > ir}f(v(ai)—l—it«koc—-t) =v(P,t) +a —t.

2) Pour ¢t <v(yn) on a, d’aprés 1.3.7, v (R, t) = v (P, t); d’ou, si de
plus ¢ < o, v(P(@+1n),t) =v(P,t). (Le cas éventuel ¢ = « s’en déduit
encore par continuité).

Siv (1) < o on vient de voir que

v(R(@)—P(@+n),t) >v(R(0),t) pour t =u(y);

~ donc, par continuité, ceci reste vrai dans un voisinage de v (1) et alors on
a dans ce voisinage v (R (), t) = v (P (d+n), t), ce qui entraine I’égalité
- des derivées a droites en ¢ = v (), c’est-a-dire la formule annoncée.
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1.13. Continuité de la division.

Rappelons que Dy est un anneau euclidien aussi bien pour la division a
droite que la division a gauche.

Définitions. Soit P € Dg, P # 0. On dit que P est t-dominant si N (P, t)
= deg P. On dit que P est t-extrémal si N(P,t) = deg P et n(P,t) = 0.
On peut encore dire que P est ~-dominant s’il n’a pas de valeurs exception-
nelles < ¢, et qu’il est z-extrémal si sa seule valeur exceptionnelle est . Dans
le cas commutatif P est r~-dominant (resp. z-extrémal) si tous ses zéros dans
K¢ sont de valuation > ¢ (resp. = t) ainsi qu’il résulte de 1.3.6.

PROPOSITION. Soit P € Dy, t-dominant avec t < a. Soient A, Q, Re Dy
tels que

A =QP + R deg R < degP.

On a alors

v(Q,t) >v(A,t) —v(P,t), v(R,t)>v(A4,1).

Méme énoncé pour la division a gauche : = PQ" + R

Démonstration : On a
N(QP,t) = N(Q,t) + N(P,t) > N(P,t) = degP > degR > N(R,?).
On a donc d’apres 1.5
v(QP +R,t) = inf (v(QP, 1),v (R, 1)).

D’ou le résultat en appliquant 1.6.

1.14.  Opérateurs fuchsiens.
d
Considéronslecas K = k ((x))avecd = - (cf.§1.11).Onawa (0) = —1.
X

Il est facile de voir que dire que P est (— 1)-dominant équivaut a dire que P
vérifie la condition de Fuchs, (poir singulier-régulier).

Par analogie on dira dans le cas général que P € Dy est Fuchsien si P
est a-dominant. Comme a la remarque 1.10 on voit que cette propriété ne
dépend que de I'opérateur différentiel et pas du choix de la dérivation.
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