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1. Fonction de valuation d'un polynôme différentiel

1.1. Soit Kun corps valué ultramétrique complet muni d'une dérivation

5. On note v la valuation de Ket a (5) (ou a si aucune confusion n'est à

craindre) le nombre

a ô)inf v (d (a)) — v (a).
aeK, a =£ 0

On suppose dorénavant que a (d) > - oo ; ceci signifie que la dérivation

est continue. La dérivation est triviale si et seulement si a + oo.

On note DK (ou D si aucune confusion n'est à craindre) l'anneau des

opérateurs différentiels à coefficients dans K, i.e. l'ensemble des sommes

finies P I at d1 (ajzK) muni de l'addition évidente et de la multiplication
définie par dldj dl+j, da ad + d (a).

1.2. Pour tout t eR Ru {-oo, + 00} et P 1 at d1 e DK on pose

v (P, t) uff) v (at) + it.
On note N (P, t) (resp. n (P, t)) le plus grand (resp. le plus petit) entier i

tel que v (at) + it v (P, t).
Si P est le polynôme nul on pose, pour tout t, v (P, t) +00 et

N (P, 0 n(P,t) ~ 00.

La fonction tv->v(P, t) est appelée la fonction de valuation de P. C'est

une fonction continue, concave, affine par morceaux. Son graphe est appelé
le polygone de valuation de P. Il est clair que N (P, t) (resp. n (P, t)) est la
dérivée à gauche (resp. à droite) de v (P, t). On a pour tous s et t de R, t < s

N (t) > n (t) > N (5) > n (s)

On dit que / eR est une valeur exceptionnelle (pour P) si N (P, t)
# n (P, t). les valeurs exceptionnelles pour P sont en nombre fini.

Pour des raisons qui apparaîtront au § 1.8, on considère que la fonction
v (P, t) et la fonction N (P, t) ne sont définies que pour t < a (d) et que la
fonction n (P, t) n'est définie que pour t < a (d).

1.3. Propriétés de la fonction de valuation dans le cas commutatif

Nous allons rappeler les principales propriétés de la fonction de valuation
dans le cas commutatif. Nous utiliserons certaines de ces propriétés par la

L'Enseignement mathém., t. XXVI, fasc. 3-4. 19
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suite. Nous donnons une idée des démonstrations de ces propriétés. On
trouvera les démonstrations détaillées par exemple dans [Am].

1.3.1. Soit P eK[X}9 soit x A 0 de K. On a v (P (x)) ^v(P9v (x)) et

on a l'égalité si v (x) n'est pas exceptionnel pour P. (C'est évident).

1.3.2. On déduit facilement de 1.3.1 que si la valuation de K est dense

on a pour tout t e R, v (P, t) inf v {P (x)), ce qui relie la fonction de
v (x)

valuation à la norme de la convergence uniforme.
Pour établir les propriétés de la fonction de valuation on peut toujours

supposer, quite à considérer un surcorps de K, que la valuation de K est

dense, ce que nous ferons désormais.

1.3.3. Pour tous P, Qe K [X] et tout t e R,

v(PQ, t) v(P91) + v(Q9 t).

D'après 1.3.1 c'est évident lorsque t n'est exceptionnel ni pour P ni pour
Q ni pour PQ et que t appartient au groupe des valeurs de K. Par continuité
la propriété s'étend à R.

1.3.4. Par dérivation on déduit de 1.3.3 que

N(PQ9t) N (P, t) + N (Q, t) et n(PQ9t) n(P9t) + n(ß, 0-

1.3.5. En décomposant P en facteurs du premier degré dans la clôture

algébrique Kal9 de K, on déduit facilement de 1.3.4 que

N (P, t) est le nombre de zéros de P dans Kalg de valuation > t

n (P, t) est le nombre de zéros de P dans Kalg de valuation > t

N (P, t) - n (P, t) est le nombre de zéros de P dans Kalg de valuation /.

Les valeurs exceptionnelles pour P sont donc les valuations des zéros de P
dans Kalg.

1.3.7. Soit PeK[X] et soit y\eK. Alors pour t (rj) on a

v(P(X+rj)9t) =v(P(X)9t). Cela se montre en utilisant 1.3.2 et en

remarquant que, pour f<fl(rç), les disques {le K, v (X+rj) > t} et

{XeK9v (X) > t} coïncident.

1.4. Bien que nous ne l'utiliserons pas par la suite, nous allons introduire
le polygone de Newton d'un opérateur différentiel afin de faire le lien avec

les travaux d'autres auteurs.
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Le polygone de Newton de P I atôl e DK est la frontière de l'enveloppe

supérieure convexe des points (/, v e R2. Notons Nw (P, t) la

fonction dont le graphe est le polygone de Newton de P. Les fonctions
— v(P9t) et Nw(P, t) sont mises en dualité par une transformation de

Legendre (cf. [La] § 1.10 pour plus de détails). En particulier les valeurs

exceptionnelles pour P sont les pentes des côtés de son polygone de Newton
changées de signe.

Comme nous ne considérons la fonction de valuation que dans l'intervalle

(— oo, a]; nous ne conservons que les côtés du polygone de Newton
de P de pente > - a.

1.5. Addition.

Proposition. Soient P et Qe DK. On a pour tout t

v(P + Q, t) > inf (v (P,

On a égalité si v (P, t)#v( Q,t)ousi # N ou si
n (P, t)#n(Q,t).

C'est évident.

1.6. Multiplication.

Les propriétés que nous allons établir dans ce paragraphe et les suivants
montrent que, pour t<a et moyennant un terme correctif, du point de
vue de la fonction de valuation tout se passe comme si la dérivation commutait

avec la multiplication par les éléments de K.

Proposition. 1) SoientP (X), Q (X) e K [X] et soient P (ô), Q (o)
les opérateurs différentiels associés. Soit R Q (Z) e K [Z]
et soit R (ô) l'opérateur différentiel associé. On a pour tout t < a.

v R(â)-P(ô)Q (5), t)> v(P, t)+ « -
2) Soient P, Qe DK. Pour t< aon a

v(PQ,t)v(P,t)+v(Q,t)

N{PQ,t)N(P,t)
Pour t < aon a

n{PQ,t) n(P,t) +
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Démonstration :

1) Vérifions le pour P (X) X1 et Q (X) a. On a

i
ad'— d'à —£ (j

7 1

d'où pour t < a

v{adl — dla, f) > inf (a) 4-ja + (i —j) t) v (a) + it + a — t.
7 ^ i

Soient maintenant P (X) 1 at X'1 et Q (X) I bj Xj. On a
i j

R(d)-p (5) Q (d)X ai (bjd> - d'bj) #
i,j

Par conséquent, utilisant 1.5, on obtient

v (R {d) — P{d)Q {d), t) > inf (ü {aj) +v {bj} + it +jt + oc-t)
i, j

inf (y {aj) + it) + inf (y {bj) +jt) + oc — t
i j

ce qui termine la démonstration.

2) D'après 1.3.3 on a v {R, t) — v {P, *) + v {Q, t). Pour t < oc la
relation annoncée s'en déduit grâce à 1) et à la proposition 1.5. Le cas

t a s'obtient par continuité.

1.7. Adjonction.

Soit P I at ôl e DK. Son adjoint est l'opérateur P* I (- l)1 ôl at
cf. [In] (5.3). On voit comme dans la proposition précédente que l'on a

pour t < a

v (.P*, t) — v (P, t).

1.8. La proposition 1.6. 2) n'est plus vraie pour t > a. En effet soit

aeK, avec 3 (a) # 0. Soit P <9, ß ö; on a PQ ad + d (a) et donc

pour t > v (ô (aj) - v (a) on aura

v {PQ, t) inf (u (d {aj), v{a)+t) v (3 (a)) # v(P,t) + v {Q, f)

v (a) + t.
C'est pour cette raison qu'on considère que la fonction de valuation

v (P, r) n'est définie que pour t < a. On notera que, quelle que soit la

représentation de l'opérateur PgKd,P laid'bi, on a toujours pour
/ < oc, v (P, 0 inf (ï; {aj) + v {bj) + it). 1
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1.9. Homothétie.

Proposition. 1) Soit P (X) e K [X] et soit P (ô) l'opérateur
différentiel associé. Soit £ e K. Notons R (X) P (ÇX) e K [X] et soit R (ô)

l'opérateur différentiel associé. Pour t < et on a

v(R(d)-P(£d),t) >v(P, t+v(Ç)) + et - t.
2) Pour t < et on a

v(P(td),t) v(P(d),t+v(0).

Pour éviter toute ambiguïté indiquons que si P (ô) I at d\ alors
R (9) 1 at ô1 et P &) I at &y.

Démonstration :

1) Vérifions l'assertion pour P (d) dl. On fait une récurrence sur i.

Pour i 1 c'est vérifié puisque R (d) — P (£9) 0.

Posons <T ô1 - (Çdy Qt (ô).

Alors Qi+1(d)-£dQi(d)-id(OiidK
Notre hypothèse de récurrence est

v (Qi (d), t) > iv (£) + it + a - t.

En appliquant 1.5 et 1.6 on obtient à l'ordre i + 1

v (Qi+1 (^)s 0 5^ (y (<s^0i (d)> ty (i + 1) v (£) + a + it)

(i + 1) v (£) + (i + 1) t + et — t.

Soit maintenant P (X) «= X at X\ On a R (9) - P (£9) I aiQi (9).
i i

En tenant compte de 1.5 on obtient donc

v R(ô)-P(Çd), t)> inf (v (at) + i(t+v (O) +
I

i

I v(P(d),t+v(0)+ a -
I 2) Dans le cas commutatif on a v(R, v(P,t + v (£)), cela se voit
| facilement en appliquant 1.3.2. Alors en appliquant 1) et la proposition 1.5

| on obtient la relation annoncée pour Le cas oc s'en déduit pari continuité.
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1.10. Remarque.

Dans le cas où la dérivation n'est pas triviale, la proposition précédente
suggère d'associer au polynôme différentiel P (d) la fonction

w (.P (d), t) v (P (d), t + et (d))

définie pour t < 0. Cette fonction est liée de façon plus intrinsèque à

l'opérateur différentiel et ne dépend pas de la dérivation choisie pour le

représenter. En effet, soit £ e K, Ç #= 0, et considérons la dérivation ô

On a a (ô) a (d) + v (£). Maintenant l'opérateur différentiel P (d) est

représenté à l'aide de la dérivation ô par Q (ô) P On aura donc

grâce à la proposition 1.8, pour t < 0

w(Q(ô),t) =v(Q(ô),t+a(ô=w(P (ô),

Une telle normalisation n'est évidemment pas possible dans le cas

commutatif (dérivation triviale).
Pour garder notre exposé aussi proche du cas commutatif que possible

nous utiliserons la fonction v (P, t) et non la fonction w (P, t), préférant,
quand cela sera nécessaire, choisir une dérivation d telle que a (d) 0.

1.11. La fonction de Gerard-Levelt.

Soit k un corps et soit K k ((*)) muni de sa valuation x-adique. Consi-
d

dérons sur K la dérivation d x — On a cc (d) 0. Si P L at d1 e DK,
dx

P d'ordre m, on voit facilement, compte tenu de la proposition 1.8, que la
fonction pk (P) de Gerard-Levelt introduite par Ramis [Ra] à la suite de

Gerard-Levelt [Ge] est liée à la fonction de valuation par la relation

pk (P) v (am) — mk — v (P, —k) k > 0

Le polygone de Newton gP+ (P) considéré par Ramis [Ra] puis

Malgrange [Ma] est le polygone de Newton de P prolongé par un côté de

pente 0 pour remplacer les éventuels côtés de pente <0 que l'on doit
supprimer (cf. § 1.4).

1.12. Translation.

Proposition. 1) Soit P(X)eK[X] et soit P {d) l'opérateur
différentiel associé. Soit rj e K. Posons R (X) P (X+rj) eK [X], On a pour
t < inf (a, v (;rj)).
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v(R(d)-P(d + n),t)>v(P(3),t)

2) Pourt < inf (a, v (rj))on a

v(P{d+t]),t)

Si v (rj) < a on a

n(P(d + rj),v(rj)) n(R,v(tj)).
Démonstration :

1) Vérifions le pour P (d) d\ On fait une récurrence sur i. Pour

i 0 c'est vérifié puisque R(d) — P (d + q) 0.

Posons I (}) nj dl'J - (d + rj)1 Qt(d).
J °

Alors Qi+1(3) (5 + n) Qi(d)~X Q ./<?('/) ' S'~s.

j= 1

Notre hypothèse de récurrence est

v (Qi (d),t)>it+ a - t si t < inf (a, (fj)).

En appliquant 1.5 et 1.6 on obtient à l'ordre i + 1

v (ôi+1 (5). 0 >inf (w (Qi (a)> 0 +inf iv (7). d » inf [a +p (7)

+ (Î-j) d)

> it+ a i (t+1) + a - tsi £ < inf (a, v (rj)).

Soit maintenant P (X) 1atX'.On a + (3).
i i

Par conséquent, en utilisant 1.5, on obtient pour t < inf (a, v (rj))

v R(d) —P(d+ rj),t)> inf (a (a,) + it + a—t) oc —

i

2) Pour t (rj) on a, d'après 1.3.7, v (R, t) v (P, t); d'où, si de

plus t < oc, v(P (d + rj),1) v (P, t). (Le cas éventuel t a s'en déduit

encore par continuité).
Si v (rj) < oc on vient de voir que

v (R (ô) —P(d + rj),t) > (P (5), t) pour t v(rj) ;

donc, par continuité, ceci reste vrai dans un voisinage de v (rj) et alors on
a dans ce voisinage v (R (d), t) v (P (d + rj), t), ce qui entraîne l'égalité
des dérivées à droites en t v (rj), c'est-à-dire la formule annoncée.
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1.13. Continuité de la division.

Rappelons que DK est un anneau euclidien aussi bien pour la division à

droite que la division à gauche.

Définitions. Soit P e DK, P / 0. On dit que P est t-dominant si N (P, t)
deg P. On dit que P est t-extrémal si N (P, t) deg P et n (P, t) 0.

On peut encore dire que P est r-dominant s'il n'a pas de valeurs exceptionnelles

< t, et qu'il est Pextrémal si sa seule valeur exceptionnelle est t. Dans
le cas commutatif P est pdominant (resp. Pextrémal) si tous ses zéros dans
Kâlg sont de valuation > t (resp. t) ainsi qu'il résulte de 1.3.6.

Proposition. Soit P e DK, t-dominant avec t < a. Soient A, Q, Re DK
tels que

A QP + R deg R < deg P

On a alors

v (Q, t) > v (A, t) — v (P, t), v (R, t) > v (A, t)

Même énoncé pour la division à gauche : A PQ' + R'.

Démonstration : On a

N (QP, t) N (Q, 0 + N (P, 0 > N (P, 0 - deg P > deg R > N (P51).

On a donc d'après 1.5

v (ßP + P, 0 inf (-y (QP, t), v (R, 0)

D'où le résultat en appliquant 1.6.

1.14. Opérateurs fuchsiens.

/ x
d

Considérons le cas K k ((x)) avec d — (cf. § 1.11). On a a (d) — 1.
y dx

Il est facile de voir que dire que P est — l)-dominant équivaut à dire que P
vérifie la condition de Fuchs, (poir singulier-régulier).

Par analogie on dira dans le cas général que P e DK est Fuchsien si P
est a-dominant. Comme à la remarque 1.10 on voit que cette propriété ne

dépend que de l'opérateur différentiel et pas du choix de la dérivation.
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