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LEMMES DE HENSEL

POUR LES OPÉRATEURS DIFFÉRENTIELS.

APPLICATION A LA RÉDUCTION FORMELLE
DES ÉQUATIONS DIFFÉRENTIELLES.

par P. Robba

Introduction

dY
Etant donné un système différentiel — ¥7, où M est une matrice

dx

méromorphe en 0, on sait qu'il existe une base de solutions formelles de la

forme
eP{t~l) + C log

avec tp x pour un entier p convenable, où Pest une matrice diagonale à

coefficients polynomiaux, C est une matrice constante et est une matrice

eGln(C [[?]]). (Cf. Turittin [Tu], Wasow [Wa], Katz [Ka], Levelt [Le],

Malgrange [Ma 1]).

Si maintenant on considère une équation différentielle linéaire d'ordre n,

on sait de façon classique ramener son étude à celle d'un système différentiel.

Réciproquement d'ailleurs, l'étude d'un système différentiel se ramène,

grâce au lemme du vecteur cyclique ([De], Lemme II. 1.3), à celle d'une

équation différentielle.
Si dans le cas des points réguliers et des points singuliers réguliers,

l'étude d'une équation différentielle se faisait directement, (voir par exemple
Ince [In]), dans le cas d'un point singulier irrégulier on considérait toujours
le cas des systèmes. Or, récemment, Malgrange [Ma2] a proposé une méthode
directe de réduction des équations différentielles. Sa méthode consiste à

obtenir une factorisation formelle (c'est-à-dire à coefficients séries formelles)
d'une équation différentielle associée à la décomposition de son polygone
de Newton. Les énoncés qu'il obtient sont tout à fait analogues aux lemmes
de Hensel classiques de factorisation des polynômes dans les corps valués

ultramétriques complets (voir [Am] par exemple). Signalons que dans le
contexte différent des équations différentielles ^-adique d'autres résultats
du type lemme de Hensel avaient déjà été obtenus par Dwork et moi-
même [Dw].
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Je me propose de traiter ici dans son cadre le plus général le problème
de factorisation des opérateurs différentiels. On verra que les polynômes
différentiels se comportent approximativement comme les polynômes
(commutatifs). Je m'efforcerai d'ailleurs, chaque fois que cela sera possible,
de conserver les définitions et les démonstrations utilisées dans le cas

commutatif. On montrera ensuite comment ces théorèmes de factorisation
(lemmes de Hensel) permettent d'étudier une équation différentielle près
d'un point singulier irrégulier.

Dans la première partie on introduit la fonction de valuation d'un
opérateur différentiel à coefficients dans un corps valué ultramétrique et on
établit ses principales propriétés. Dans l'étude des propriétés de factorisation

d'un polynôme, une longue tradition qui remonte à Newton veut que
l'on fasse intervenir le polygone de Newton. (Ainsi Malgrange a la suite
de Ramis [Ra] utilise le polygone de Newton d'un opérateur différentiel).
Si l'on appelle fonction de Newton la fonction dont le graphe est le polygone
de Newton, fonction de Newton et fonction de valuation sont mises en

dualité par une transformation de Legendre ainsi que l'a observé Lazard

[La]. Or l'outil vraiment commode pour les démonstrations est la fonction
de valuation. De plus la fonction de valuation s'étend de façon naturelle

aux fractions rationnelles et aux polynômes à plusieurs variables, ce qui
n'est pas le cas pour le polygone de Newton. A mon avis, le seul avantage
du polygone de Newton est que, dans les exemples numériques, il est plus
facile à tracer que le polygone de valuation.

Dans la deuxième partie on établit différents théorèmes de factorisation.
On montre d'une part qu'il existe une factorisation d'un polynôme
différentiel liée à la présence de sommets sur son polygone de valuation. On

montre d'autre part comment une factorisation approchée peut être raffinée

en une factorisation exacte.

Dans une troisième partie on montre comment ces théorèmes de

factorisation nous permettent d'obtenir la réduction formelle d'une équation
différentielle au voisinage d'un point singulier irrégulier. La démonstration

que nous donnons ne diffère guère de la démonstration de Malgrange dans

[Ma 2]. Nous montrons que le module différentiel associé à un opérateur
différentiel ne change pas pour de petites variations des coefficients. Un
tel résultat a été obtenu par Malgrange [Ma 2], mais nous améliorons ses

estimations et l'utilisation de la fonction de valuation nous permet d'éviter
de longs et fastidieux calculs.

Je tiens à remercier D. Bertrand qui m'a indiqué les résultats de

Malgrange et avec qui j'ai eu d'intéressantes discussions sur ce sujet.
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1. Fonction de valuation d'un polynôme différentiel

1.1. Soit Kun corps valué ultramétrique complet muni d'une dérivation

5. On note v la valuation de Ket a (5) (ou a si aucune confusion n'est à

craindre) le nombre

a ô)inf v (d (a)) — v (a).
aeK, a =£ 0

On suppose dorénavant que a (d) > - oo ; ceci signifie que la dérivation

est continue. La dérivation est triviale si et seulement si a + oo.

On note DK (ou D si aucune confusion n'est à craindre) l'anneau des

opérateurs différentiels à coefficients dans K, i.e. l'ensemble des sommes

finies P I at d1 (ajzK) muni de l'addition évidente et de la multiplication
définie par dldj dl+j, da ad + d (a).

1.2. Pour tout t eR Ru {-oo, + 00} et P 1 at d1 e DK on pose

v (P, t) uff) v (at) + it.
On note N (P, t) (resp. n (P, t)) le plus grand (resp. le plus petit) entier i

tel que v (at) + it v (P, t).
Si P est le polynôme nul on pose, pour tout t, v (P, t) +00 et

N (P, 0 n(P,t) ~ 00.

La fonction tv->v(P, t) est appelée la fonction de valuation de P. C'est

une fonction continue, concave, affine par morceaux. Son graphe est appelé
le polygone de valuation de P. Il est clair que N (P, t) (resp. n (P, t)) est la
dérivée à gauche (resp. à droite) de v (P, t). On a pour tous s et t de R, t < s

N (t) > n (t) > N (5) > n (s)

On dit que / eR est une valeur exceptionnelle (pour P) si N (P, t)
# n (P, t). les valeurs exceptionnelles pour P sont en nombre fini.

Pour des raisons qui apparaîtront au § 1.8, on considère que la fonction
v (P, t) et la fonction N (P, t) ne sont définies que pour t < a (d) et que la
fonction n (P, t) n'est définie que pour t < a (d).

1.3. Propriétés de la fonction de valuation dans le cas commutatif

Nous allons rappeler les principales propriétés de la fonction de valuation
dans le cas commutatif. Nous utiliserons certaines de ces propriétés par la

L'Enseignement mathém., t. XXVI, fasc. 3-4. 19
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suite. Nous donnons une idée des démonstrations de ces propriétés. On
trouvera les démonstrations détaillées par exemple dans [Am].

1.3.1. Soit P eK[X}9 soit x A 0 de K. On a v (P (x)) ^v(P9v (x)) et

on a l'égalité si v (x) n'est pas exceptionnel pour P. (C'est évident).

1.3.2. On déduit facilement de 1.3.1 que si la valuation de K est dense

on a pour tout t e R, v (P, t) inf v {P (x)), ce qui relie la fonction de
v (x)

valuation à la norme de la convergence uniforme.
Pour établir les propriétés de la fonction de valuation on peut toujours

supposer, quite à considérer un surcorps de K, que la valuation de K est

dense, ce que nous ferons désormais.

1.3.3. Pour tous P, Qe K [X] et tout t e R,

v(PQ, t) v(P91) + v(Q9 t).

D'après 1.3.1 c'est évident lorsque t n'est exceptionnel ni pour P ni pour
Q ni pour PQ et que t appartient au groupe des valeurs de K. Par continuité
la propriété s'étend à R.

1.3.4. Par dérivation on déduit de 1.3.3 que

N(PQ9t) N (P, t) + N (Q, t) et n(PQ9t) n(P9t) + n(ß, 0-

1.3.5. En décomposant P en facteurs du premier degré dans la clôture

algébrique Kal9 de K, on déduit facilement de 1.3.4 que

N (P, t) est le nombre de zéros de P dans Kalg de valuation > t

n (P, t) est le nombre de zéros de P dans Kalg de valuation > t

N (P, t) - n (P, t) est le nombre de zéros de P dans Kalg de valuation /.

Les valeurs exceptionnelles pour P sont donc les valuations des zéros de P
dans Kalg.

1.3.7. Soit PeK[X] et soit y\eK. Alors pour t (rj) on a

v(P(X+rj)9t) =v(P(X)9t). Cela se montre en utilisant 1.3.2 et en

remarquant que, pour f<fl(rç), les disques {le K, v (X+rj) > t} et

{XeK9v (X) > t} coïncident.

1.4. Bien que nous ne l'utiliserons pas par la suite, nous allons introduire
le polygone de Newton d'un opérateur différentiel afin de faire le lien avec

les travaux d'autres auteurs.
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Le polygone de Newton de P I atôl e DK est la frontière de l'enveloppe

supérieure convexe des points (/, v e R2. Notons Nw (P, t) la

fonction dont le graphe est le polygone de Newton de P. Les fonctions
— v(P9t) et Nw(P, t) sont mises en dualité par une transformation de

Legendre (cf. [La] § 1.10 pour plus de détails). En particulier les valeurs

exceptionnelles pour P sont les pentes des côtés de son polygone de Newton
changées de signe.

Comme nous ne considérons la fonction de valuation que dans l'intervalle

(— oo, a]; nous ne conservons que les côtés du polygone de Newton
de P de pente > - a.

1.5. Addition.

Proposition. Soient P et Qe DK. On a pour tout t

v(P + Q, t) > inf (v (P,

On a égalité si v (P, t)#v( Q,t)ousi # N ou si
n (P, t)#n(Q,t).

C'est évident.

1.6. Multiplication.

Les propriétés que nous allons établir dans ce paragraphe et les suivants
montrent que, pour t<a et moyennant un terme correctif, du point de
vue de la fonction de valuation tout se passe comme si la dérivation commutait

avec la multiplication par les éléments de K.

Proposition. 1) SoientP (X), Q (X) e K [X] et soient P (ô), Q (o)
les opérateurs différentiels associés. Soit R Q (Z) e K [Z]
et soit R (ô) l'opérateur différentiel associé. On a pour tout t < a.

v R(â)-P(ô)Q (5), t)> v(P, t)+ « -
2) Soient P, Qe DK. Pour t< aon a

v(PQ,t)v(P,t)+v(Q,t)

N{PQ,t)N(P,t)
Pour t < aon a

n{PQ,t) n(P,t) +
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Démonstration :

1) Vérifions le pour P (X) X1 et Q (X) a. On a

i
ad'— d'à —£ (j

7 1

d'où pour t < a

v{adl — dla, f) > inf (a) 4-ja + (i —j) t) v (a) + it + a — t.
7 ^ i

Soient maintenant P (X) 1 at X'1 et Q (X) I bj Xj. On a
i j

R(d)-p (5) Q (d)X ai (bjd> - d'bj) #
i,j

Par conséquent, utilisant 1.5, on obtient

v (R {d) — P{d)Q {d), t) > inf (ü {aj) +v {bj} + it +jt + oc-t)
i, j

inf (y {aj) + it) + inf (y {bj) +jt) + oc — t
i j

ce qui termine la démonstration.

2) D'après 1.3.3 on a v {R, t) — v {P, *) + v {Q, t). Pour t < oc la
relation annoncée s'en déduit grâce à 1) et à la proposition 1.5. Le cas

t a s'obtient par continuité.

1.7. Adjonction.

Soit P I at ôl e DK. Son adjoint est l'opérateur P* I (- l)1 ôl at
cf. [In] (5.3). On voit comme dans la proposition précédente que l'on a

pour t < a

v (.P*, t) — v (P, t).

1.8. La proposition 1.6. 2) n'est plus vraie pour t > a. En effet soit

aeK, avec 3 (a) # 0. Soit P <9, ß ö; on a PQ ad + d (a) et donc

pour t > v (ô (aj) - v (a) on aura

v {PQ, t) inf (u (d {aj), v{a)+t) v (3 (a)) # v(P,t) + v {Q, f)

v (a) + t.
C'est pour cette raison qu'on considère que la fonction de valuation

v (P, r) n'est définie que pour t < a. On notera que, quelle que soit la

représentation de l'opérateur PgKd,P laid'bi, on a toujours pour
/ < oc, v (P, 0 inf (ï; {aj) + v {bj) + it). 1
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1.9. Homothétie.

Proposition. 1) Soit P (X) e K [X] et soit P (ô) l'opérateur
différentiel associé. Soit £ e K. Notons R (X) P (ÇX) e K [X] et soit R (ô)

l'opérateur différentiel associé. Pour t < et on a

v(R(d)-P(£d),t) >v(P, t+v(Ç)) + et - t.
2) Pour t < et on a

v(P(td),t) v(P(d),t+v(0).

Pour éviter toute ambiguïté indiquons que si P (ô) I at d\ alors
R (9) 1 at ô1 et P &) I at &y.

Démonstration :

1) Vérifions l'assertion pour P (d) dl. On fait une récurrence sur i.

Pour i 1 c'est vérifié puisque R (d) — P (£9) 0.

Posons <T ô1 - (Çdy Qt (ô).

Alors Qi+1(d)-£dQi(d)-id(OiidK
Notre hypothèse de récurrence est

v (Qi (d), t) > iv (£) + it + a - t.

En appliquant 1.5 et 1.6 on obtient à l'ordre i + 1

v (Qi+1 (^)s 0 5^ (y (<s^0i (d)> ty (i + 1) v (£) + a + it)

(i + 1) v (£) + (i + 1) t + et — t.

Soit maintenant P (X) «= X at X\ On a R (9) - P (£9) I aiQi (9).
i i

En tenant compte de 1.5 on obtient donc

v R(ô)-P(Çd), t)> inf (v (at) + i(t+v (O) +
I

i

I v(P(d),t+v(0)+ a -
I 2) Dans le cas commutatif on a v(R, v(P,t + v (£)), cela se voit
| facilement en appliquant 1.3.2. Alors en appliquant 1) et la proposition 1.5

| on obtient la relation annoncée pour Le cas oc s'en déduit pari continuité.
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1.10. Remarque.

Dans le cas où la dérivation n'est pas triviale, la proposition précédente
suggère d'associer au polynôme différentiel P (d) la fonction

w (.P (d), t) v (P (d), t + et (d))

définie pour t < 0. Cette fonction est liée de façon plus intrinsèque à

l'opérateur différentiel et ne dépend pas de la dérivation choisie pour le

représenter. En effet, soit £ e K, Ç #= 0, et considérons la dérivation ô

On a a (ô) a (d) + v (£). Maintenant l'opérateur différentiel P (d) est

représenté à l'aide de la dérivation ô par Q (ô) P On aura donc

grâce à la proposition 1.8, pour t < 0

w(Q(ô),t) =v(Q(ô),t+a(ô=w(P (ô),

Une telle normalisation n'est évidemment pas possible dans le cas

commutatif (dérivation triviale).
Pour garder notre exposé aussi proche du cas commutatif que possible

nous utiliserons la fonction v (P, t) et non la fonction w (P, t), préférant,
quand cela sera nécessaire, choisir une dérivation d telle que a (d) 0.

1.11. La fonction de Gerard-Levelt.

Soit k un corps et soit K k ((*)) muni de sa valuation x-adique. Consi-
d

dérons sur K la dérivation d x — On a cc (d) 0. Si P L at d1 e DK,
dx

P d'ordre m, on voit facilement, compte tenu de la proposition 1.8, que la
fonction pk (P) de Gerard-Levelt introduite par Ramis [Ra] à la suite de

Gerard-Levelt [Ge] est liée à la fonction de valuation par la relation

pk (P) v (am) — mk — v (P, —k) k > 0

Le polygone de Newton gP+ (P) considéré par Ramis [Ra] puis

Malgrange [Ma] est le polygone de Newton de P prolongé par un côté de

pente 0 pour remplacer les éventuels côtés de pente <0 que l'on doit
supprimer (cf. § 1.4).

1.12. Translation.

Proposition. 1) Soit P(X)eK[X] et soit P {d) l'opérateur
différentiel associé. Soit rj e K. Posons R (X) P (X+rj) eK [X], On a pour
t < inf (a, v (;rj)).
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v(R(d)-P(d + n),t)>v(P(3),t)

2) Pourt < inf (a, v (rj))on a

v(P{d+t]),t)

Si v (rj) < a on a

n(P(d + rj),v(rj)) n(R,v(tj)).
Démonstration :

1) Vérifions le pour P (d) d\ On fait une récurrence sur i. Pour

i 0 c'est vérifié puisque R(d) — P (d + q) 0.

Posons I (}) nj dl'J - (d + rj)1 Qt(d).
J °

Alors Qi+1(3) (5 + n) Qi(d)~X Q ./<?('/) ' S'~s.

j= 1

Notre hypothèse de récurrence est

v (Qi (d),t)>it+ a - t si t < inf (a, (fj)).

En appliquant 1.5 et 1.6 on obtient à l'ordre i + 1

v (ôi+1 (5). 0 >inf (w (Qi (a)> 0 +inf iv (7). d » inf [a +p (7)

+ (Î-j) d)

> it+ a i (t+1) + a - tsi £ < inf (a, v (rj)).

Soit maintenant P (X) 1atX'.On a + (3).
i i

Par conséquent, en utilisant 1.5, on obtient pour t < inf (a, v (rj))

v R(d) —P(d+ rj),t)> inf (a (a,) + it + a—t) oc —

i

2) Pour t (rj) on a, d'après 1.3.7, v (R, t) v (P, t); d'où, si de

plus t < oc, v(P (d + rj),1) v (P, t). (Le cas éventuel t a s'en déduit

encore par continuité).
Si v (rj) < oc on vient de voir que

v (R (ô) —P(d + rj),t) > (P (5), t) pour t v(rj) ;

donc, par continuité, ceci reste vrai dans un voisinage de v (rj) et alors on
a dans ce voisinage v (R (d), t) v (P (d + rj), t), ce qui entraîne l'égalité
des dérivées à droites en t v (rj), c'est-à-dire la formule annoncée.
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1.13. Continuité de la division.

Rappelons que DK est un anneau euclidien aussi bien pour la division à

droite que la division à gauche.

Définitions. Soit P e DK, P / 0. On dit que P est t-dominant si N (P, t)
deg P. On dit que P est t-extrémal si N (P, t) deg P et n (P, t) 0.

On peut encore dire que P est r-dominant s'il n'a pas de valeurs exceptionnelles

< t, et qu'il est Pextrémal si sa seule valeur exceptionnelle est t. Dans
le cas commutatif P est pdominant (resp. Pextrémal) si tous ses zéros dans
Kâlg sont de valuation > t (resp. t) ainsi qu'il résulte de 1.3.6.

Proposition. Soit P e DK, t-dominant avec t < a. Soient A, Q, Re DK
tels que

A QP + R deg R < deg P

On a alors

v (Q, t) > v (A, t) — v (P, t), v (R, t) > v (A, t)

Même énoncé pour la division à gauche : A PQ' + R'.

Démonstration : On a

N (QP, t) N (Q, 0 + N (P, 0 > N (P, 0 - deg P > deg R > N (P51).

On a donc d'après 1.5

v (ßP + P, 0 inf (-y (QP, t), v (R, 0)

D'où le résultat en appliquant 1.6.

1.14. Opérateurs fuchsiens.

/ x
d

Considérons le cas K k ((x)) avec d — (cf. § 1.11). On a a (d) — 1.
y dx

Il est facile de voir que dire que P est — l)-dominant équivaut à dire que P
vérifie la condition de Fuchs, (poir singulier-régulier).

Par analogie on dira dans le cas général que P e DK est Fuchsien si P
est a-dominant. Comme à la remarque 1.10 on voit que cette propriété ne

dépend que de l'opérateur différentiel et pas du choix de la dérivation.



2. Lemmes de Hensel

Dans ce paragraphe il est essentiel de supposer que K est complet pour
sa valuation.

2.1. Dans le cas commutatif il existe deux types de lemmes de Hensel.

Une propriété de factorisation d'un polynôme relativement aux valeurs

exceptionnelles qui lui sont associées (pentes du polygone de Newton).
Pour les polynômes différentiels on aura exactement la même propriété

pour les valeurs exceptionnelles < a (pentes > - a) (corollaire 2.6). Toute
la partie correspondant à t > a sera regroupée en un seul facteur fuchsien

(a-dominant) (théorème 2.4).
Par ailleurs pour un polynôme à coefficients dans l'anneau de valuation

de K, si par passage au quotient on a une factorisation dans le corps résiduel
en facteurs premiers entre eux, cette factorisation se relève. Dans le cas des

opérateurs différentiels pour pouvoir passer au quotient il faut d'abord
supposer que la dérivation envoie l'anneau de valuation de K dans lui-
même, c'est-à-dire que a > 0. Si a > 0, la dérivation est triviale sur le

corps résiduel, donc par passage au quotient les polynômes différentiels
commutent; alors une factorisation en facteurs premiers entre eux se relève
(théorème 2.5). Dans le cas oc 0 on ne peut pas obtenir de résultat général.

Chaque cas d'espèce demande un traitement particulier. Le cas parti-
d

culier K k ((*)) et d x — sera traité plus loin (Théorème 2.13).

2.2. Lemme. Soient A,P, Q,P', Q' e DK tels que

(1 )A QP P'Q'
(2) deg P deg P' (deg Q deg Q')

(3) pour tous P, QeD, deg P < deg P et PQ' QP entraînent
P Q 0.

Alors on a D/DP ~ DjDP', DjDQ ~ D/DQ', D/DA ~ D/DP
© D/DQ. (Les isomorphismes étant des isomorphismes de D-modules à
gauche).

Pour la notion de D-module on renvoit à [Mn].
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Démonstration (Malgrange). On considère la suite exacte de D-modules
à gauche

X n
0 D/DQ - DIDA -» D/DP 0

où la première flèche (resp. la seconde) est définie par passage au quotient
à partir de la multiplication à droite par P (resp. à partir de l'identité). De
même on a la suite exacte

X' n'
0 -> D/DP' D/DA D\DQ' -> 0

Nous allons montrer que le morphisme \iX est un isomorphisme de

D/DP' sur D/DP. Comme ces deux modules sont finis et de même rang
sur K, il suffit de montrer que fiX est injectif. Or, soit a g D/DP' tel qu'on
ait fiX (a) 0. En relevant g en S g D cela signifie qu'on a SQr g DP.
L'ensemble des S vérifiant cette dernière condition est un idéal à gauche
de D contenant P', et il suffit de montrer que P' engendre cet idéal. Si

c'était faux, le générateur P de cet idéal serait de degré < degP' et l'on
aurait la relation PQ' QP, ce qui est incompatible avec (3).

(On montre de même que fi'X est un isomorphisme de D/DQ sur D/DQ').
Mais alors l'application X (fxX)"1 est un relèvement de /x ce qui démontre

la dernière assertion.

2.3. Remarque.

On a observé dans la démonstration précédente que si l'on avait une
factorisation A QP, on identifiait de façon canonique D/DQ à un sous-
module de D/DA. Réciproquement soit N un sous-D-module du D-module

M DjDA. Soit m l'image dans M du polynôme constant 1 de D, c'est

un vecteur cyclique de M et l'on a Am 0. Soit u l'image de m dans le

D-module quotient M/N; u est un vecteur cyclique de M/N. Si P e D est

le polynôme différentiel unitaire minimal que annihile w, alors P divise A
et M/N ^ D)DP. Soit A QP, D/DQ s'identifie avec le noyau de l'application

quotient M M/N, donc DjDQ ^ N. On voit donc qu'il est

équivalent d'étudier la factorisation de l'opérateur A et de rechercher les

sous-modules du D-module D/DA.

2.4. Théorème. Soit A g Dk. Soit t < a.

1) Il existe Q,PeDK avec P t-dominant, deg P — N {A, t), tels

que A QP.
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2) (Unicité). Si l'on a une autre décomposition A Q1P1 vérifiant
les mêmes conditions, il existe a # 0 de K tel que Q1 Qa

1 et

P1 aP.

3) Il existe Q\P'eDK avec P' t-dominant, degP' N(A, t),
tels que A — P' Q.

4) On a D/DP ~ D\DP\ D/DQ ~ D/DQ', D/DA ~ D/DP © D/DQ.

Démonstration :

1) Soit A 1 at d\ Posons N N (A, t). Posons P0 I at d\
i^N

On définit Pn Qn, Rn de DK par les formules de récurrence

A QnPn + Rn deg Rn < deg Pn

Pn+1 Pn + Rn •

Soit X v (A~P0, t) - v (A, t). Il résulte de la définition de

N N (A, t) que À > 0.

Nous allons montrer par induction sur n que l'on a

(ï)n Pn est /-dominant et v (Pn, t) v (A, t).

(iï)„ v(l- Qn, 0 > 2

(iii)„ v t) > v (A4, 0 + (72+ 1) A

(iv)„ v (Qn+1 - 0 > (n + 2) A.

Remarquons que P0 est de degré N et que le coefficient de dN dansP0
est aN; d'où

v(PQ,t) inf + «Ar + iV/ inf (v (a/) + it) v(A,t)
i^N i

ce qui montre (/)0.
Comme P0 est /-dominant et que l'on a

A - Po(1 -Qo)P +RodegR„ < deg

il résulte de la proposition 1.12 et de la définition de A que l'on a

v(l-Qo,t)>v(A-P0,t)-v(P0,t)>A
et v(R0,t)>v{A-Po,t)>v{A,i)+ A

ce qui montre (ii)0 et (iii)0.
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Comme l'on a

^ QnPn + Rn Qn+l^n+l + Rn + 1 Qn + 1 (Pn + &n) + &n +1

d'où

(1-Qn)-R„ (ön+1 -Qn)P„ + R„+1deg deg Pn

il résulte de (i)„ (ii)w (iii)„ et de la proposition 1.13 que

(Qn+1 - <2„> Qn, t) +v (P„, t) - V (P„, 0 > O + 2) 2

et v (Rn+i, t) v (1 — Qn, t) + v (Rn, t) > (n + 2) À

ce qui montre (iv)„ et (iii)„+1.
D'après (iii)„ v (Rni t) > v (A, t) v (Pn, t), donc

v(Pn+ut) ®(P„,0 v(A,0

Par ailleurs il est clair que Pn+ t est de degré TV et que le coefficient de

dans P„+1 est Il en résulte, comme pour P0, que Pn+1 est /-dominant,
ce qui montre (i)w+ t.

Enfin d'après (ii)„ et (iv)„

V (1 —ôn+lJ 0 > inf (t> (1 — Q„, 0> V (ôn — ôn+l) 0) > A

ce qui montre (ii)w+ <L.

Ceci achève la démonstration des formules (i)„ (iv)n.
On a pour tout n deg Pn N, deg Rn < deg ^4, deg Qn < deg A — N.

Les relations (iii)n et (iv)„ montrent que les coefficients de Rn tendent vers
0 et que les coefficients de Pn et Qn forment des suites de Cauchy. Comme K
est complet ces suites convergent. Soient P lim Pn et Q lim Qn. On
a A lim (Q„Pn +R„) QP.

Enfin il est clair que le coefficient de dN dans P est aN. Ceci joint au fait
que v (P, t) lim v ÇPm t) v {A, t) montre que P est /-extrémal et que
degP N N(A, t).

2) Effectuons la division euclidienne de Px par P. Comme degPj
deg P N (A, /)) on a

Px aP + R deg R < deg P, a e K

Comme P est /-extrémal ceci entraîne

ZV(P,0 < deg P < degP N(P,t).
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De la relation A QPQ^on tire

QxR (ôi

Comme t>a on a en premier lieu

N(Qi,0 JVCA, 0 -N(Pltt) o

et par conséquent

TV (Qi R, t)N(g1;t) + iV CR, 0 IV (R, t) Al (ôt - ö«> 0 + (p> 0-

Cette relation jointe à l'inégalité IV (R, f) < iV (R, t) entraîne

!V(R,0 N(Qx -Qa, t- co

c'est-à-dire R ßi ~ ßß 0 ce qui démontre 2)

3) Cela se fait comme en 1) en changeant l'ordre des produits.

4) Supposons qu'on ait PQ' QP avec deg P < deg P.

On a comme précédemment N(Q\ t) 0 et

N (P, 0 < deg P < deg P N(P, t)

ce qui, joint à

JV (P, 0 + N(Q',t) N (ß, 0 + JV (P, 0

entraîne P ß 0. On applique alors le lemme 2.2.

2.5. Exemples.

/ s
d

2.5.1. Soit &((x)) muni de la dérivation ô — (cf. § 1.14). En
y dx

appliquant le théorème précédent avec t — a — 1, on obtient une
décomposition de l'opérateur différentiel A en un facteur fuchsien P et un facteur

ß totalement irrégulier, c'est-à-dire qui ne possède pas de facteur fuchsien
de degré non nul.

2.5.2. Soit L un corps valué ultramétrique. L'application Pt->i> (P, 0)
définie sur L [X] s'étend à L (X) et définit une valuation sur L (X) appelée
valuation de Gauss. Le complété de L (X) pour cette valuation sera noté

d
E (cf. [Dw] pour plus de détails). La dérivation d — définie sur L (X)
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est continue et s'étend äE. On a a (ô) 0. Le théorème précédent s'applique
donc pour t < 0. (Le cas t 0 a été considéré dans [Ro]).

2.5.3. Remarquons que les résultats du § 1 sont encore valables si les

coefficients des opérateurs différentiels sont pris non pas dans un corps
mais dans un anneau valué. Dans la proposition 1.13 pour pouvoir effectuer
la division euclidienne il faut bien sûr supposer que le coefficient du terme
de plus haut degré de P est inversible dans l'anneau considéré.

En particulier la démonstration du théorème 2.4 reste valide si l'on
suppose que le coefficient aN de l'opérateur A est inversible.

Cette remarque nous sert dans la situation suivante :

Soit L un corps valué ultramétrique complet algébriquement clos. Soit
S un sous-ensemble de L. Si/ définie sur S, est la limite uniforme sur S de

fractions rationnelles sans pôles dans S on dit que / est un élément analytique

sur S. Supposons que S soit une union de classes résiduelles de L\
alors en utilisant les propriétés du paragraphe 1.3 on montre facilement

que pour une fraction rationnelle / sans pôles dans S, inf (/(*))
xeS

v (/, 0). Il en résulte que l'anneau H (S) des éléments analytiques sur S
s'identifie à un sous-anneau fermé de E, défini en 2.5.2. On dit que/eis
est un élément analytique admissible (cf. [Dw]) s'il existe un sous-ensemble

S formé de toutes les classes résiduelles sauf un nombre fini (on dira que S
est standard) tel que / soit un élément analytique sur S. L'ensemble des

éléments analytiques admissibles forme un sous-corps H do E qui n'est pas
complet pour la valuation. Mais pour chaque a e H, il existe un ensemble

standard S tel que a g H (S) et que a ne s'annule pas dans S (cette dernière
condition peut être réalisée car un élément analytique sur un ensemble

standard n'a qu'un nombre fini de zéros). Alors l'anneau H (S) est complet
d

et a est inversible dans H (S). Pour la dérivation ô — de ET, H (S) est
dx

stable. Le théorème 2.4 est donc encore valable pour les opérateurs à

coefficients dans H bien que H ne soit pas complet.

2.6. Corollaire. Soit A e DK et soit t < oc.

1) Il existe Q,Pe DK, avec P t-extrémal et deg P — N (A, t)
— n (A, t), tels que A QP.

2) On a également une factorisation A — P' Q' où P' vérifie les mêmes

conditions que P.

3) On a DjDP ~ D/DP', D/DQ ~ D\DQ\ D/DA ~ D/DP ® D/DQ.
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Démonstration. D'après le théorème 2.4 il existe L, B e DK, avec B /-dominant

et N(B, t) N(A,t) tels que ALB.

Alors N(L,t)0, donc N(L, s)0 pour .s > t et n {L, s) 0 pour

s > /. Par conséquent pour s > / on a

N(B, s) N(A, s) et n (B, s) n (A, s)

Pour s assez voisin de /, s >t,ona n{B, t) N s). Pour un tel s

il existe M,P e DK, M ^-dominant, tels que B MP et N (M, s) N s).

On pose QLM. On a donc AQP. Par ailleurs deg N (A, t),
deg M N(B, s) n(B, t) n (A, t), et donc deg P N (A, t)
— n (A, t).

Comme t < s, N (M, t) — n (M, t) deg M, d'où

N(P,t) N(B,t) — N (M, t) N(A,t) -n(A,t)
n (P, t) n (.B, t) — n (M, t) 0

ce qui montre que P est ^-extrémal.

2) Se démontre de même et 3) se démontre comme le 4) du théorème 2.4.

2.7. Notons @ l'anneau de valuation de K. Supposons que a (ô) > 0.

Alors la dérivation envoie G dans son idéal maximal et par passage au

quotient induit la dérivation triviale sur le corps de restes k de K.
Nous noterons G [0] l'anneau des éléments de DK dont les coefficients

sont dans G. Soit A Iat dl e G [d] et A I at ôl e k [d] son image.

Supposons qu'on ait une factorisation Ä Q*P* dans k [3], nous cherchons
si cette factorisation se relève dans G [3]. La démonstration classique de ce

lemme de Hensel dans le cas commutatif (cf. par exemple [Am] 2.5) ne se

généralise pas au cas des opérateurs différentiels. Nous allons donc suivre
la méthode de [Dw] § 6 qui interprète l'équation A QP en un système

d'équations différentielles non linéaires portant sur les coefficients de Q

et P. Nous allons donc commencer par étudier à quelles conditions un
système d'équations différentielles non linéaires ayant une solution dans
le corps résiduel a une solution dans G.

Soit un système différentiel non linéaire de m équations à m inconnues à

coefficients dans G. Précisément posant

X (Xy,Xm),Yt(7(. 1; 7, J 1 < /' < v

et X"= XÏ' X"mm pour n e Nm, soit
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(2.7.1) F(X9YU...,YS) Y Cß9(vi)X»Y?..,Yl*

avec p, Di g Nm, la somme étant finie, et avec Cßt (t>g Om.

Nous cherchons une solution dans (9m de l'équation

(2.7.2) G(X)défF(X,S(X),...,5s(X)) 0.

Pour u e(9nousappelons application tangente à G en w, l'application
Lu de <Sm dans lui-même définie par

m

(2.7.3) L„(z) L„(z1;..., zm) Y, zi ("» 3(")> •••)
i= 1 dAf

s m dF+ZZ 5Jzi ("'3 (")>•••) •

/-I i=l aïj,i
Nous écrirons

Lu (z) -4„ (z) + Bu (d (z))

dF
où ^(M (z) I" Z; — (u, Nous utiliserons la même notation Au pour

i 1

désigner l'application de $m dans lui-même et la matrice qui lui est associée.

Par passage au quotient l'équation (2.7.2) devient

(2.7.4) G(D=XCMO)P 0

dont l'application tangente en u* g &m est Äu* définie par

dG
(2.7.5) 4,.(z) Z z,. —(«*).

i 1 vXi

2.8. Proposition, Sh/7 a > 0. Soient F et G définies par les formules
(2.7.1) et (2.7.2). Soù u* g km une solution de l'équation réduite G (u*) 0.

Supposons que l'application tangente réduite Au* est inversible dans km.

Alors u* se relève de façon unique en une solution ue(9m de l'équation
G (iu) 0.

Démonstration. Soit r\ un relèvement de w* dns (9m. Considérons le développement

taylorien de G autour de r\

(2.8.1) G^+X) G (ri) + A„ (X) + (S (X)) + Q„ (X)
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On a An Au*. D'après notre hypothèse det (Aut) A 0, ceci signifie

que det (An) est une unité de & donc que An est inversible dans GLm (dé¬

posons u t] + w. Alors l'équation 0 équivaut à

(2.8.2) w - A;1(G(f?)+B,(0(w))+Ô,(lv)) déf

On munit Km de la norme (exprimée sous forme additive) définie pour
A (xlt..., xj eKm par v (X)inf v (xf

i
Notons que, comme Qn ne contient que des termes au moins quadratiques

en la variable et ses dérivées on a pour tous z, y e (9m

v(6,0)) > 2v (z)

y {Qn (z) - Qn (y)) > V (z-y) + inf (y), v (z))

Comme G (rj) G (;u*) 0, on a v (G (tj)) > 0. Choisissons A réel tel

que
0 < A < inf (a, v (G (rç)))

Soit U {zer^(z) >1}. Nous allons montrer que $ est une
contraction de U. Puisque U est complet il en résultera par le théorème du
point fixe que l'équation (2.7.2) possède une solution dans U et donc que
l'équation (2.7.2) possède une solution u qui est un relèvement de w*.

i) $ envoie U dans lui-même. En effet on a pour v (z) > A

v (<£ (z)) > inf (v G(rj)),v (dz)), v (g„ (z)) > inf (v (G v(z)
2v (z)) >

ii) <t> est une contraction.

v (0 (z) - 0 (y)) > inf (v(z-y)+z,v(z-rj)+inf (u (z), v (y)))

>v(z-y)+ X.

Montrons l'unicité du relèvement. Soit u1 un deuxième relèvement de
u* solution de l'équation (2.7.2). On a u (uj^-rj) > 0. Il est toujours possible
de choisir X de sorte que 0 < X < v (u1-rj).Alorsut - et vérifie
(2.8.2). En vertu de l'unicité du point fixe d'une contraction on a
ul - t] u — t]d'où u.

2.9. Theoreme. Soit a>0. Soit A s & [A] de degré + Supposons
que son image Ä dans k [A] se factorise sous la forme

L'Enseignement mathém., t. XXVI, fasc. 3-4. 20
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(2.9.1) A g*P*

où P* est unitaire de degré n, g* P* premiers entre eux.

1) Il existe un relèvement unique g, P de g*, P* avec deg Q — m,
deg P n, P unitaire, tel que

(2.9.2) A{d) Q(5)P(3).

2) // existe également un unique relèvement Q',Pf vérifiant les mêmes

hypothèses que Q et P tel que

(2.9.3) A{S) P'(3)ß'(3).

3) <9/7 a P/PP - D/DPf, D/DQ ~ D/DQ', D/DA ~ D/DP ® D/DQ.

Démonstration. L'équation (2.9.2) peut s'interpréter comme un système
de m + 77 équations différentielles portant sur les coefficients (d'ordre
<ra — 1 et d'ordre <« — 1 respectivement) de g et de P, et (2.9.1)
représente alors le système réduit. Si désigne l'espace des polynômes à

coefficients dans k de degré < m, l'application tangente réduite ÄQ*} P*

s'interprète comme l'application de x x 0)n_1 dans ^>m+n_1

iU, F)h-> LP* + Q*V,

et cette application est inversible si et seulement si P* et g* sont premiers
entre eux (théorème de Bezout, cf. [Ro] § 1.3).

2.10. Dans le cas a 0, la démonstration précédente n'est plus valable

(car l'application z i-> Bn (ôz) n'est plus forcément une contraction). Il
n'existe pas de démonstration valable pour tous les corps avec dérivation
donnant un résultat du type du théorème 2.9 pour a 0. On donnera
deux exemples de cette situation: l'un dans le cas K k((x)) (cf. 2.5.1),
l'autre dans le cas où K est le corps considéré à l'exemple 2.5.2.

Nous allons établir maintenant un lemme de Hensel du type précédent

/ à
dans le cas K k ((x)) muni de la dérivation ô x — (on a alors

dx

a (id) 0). Nous allons d'abord donner une nouvelle version du théorème
2.8. Soient F, G et Lu définies par les relations (2.7.1), (2.7.2) et (2.7.3).
Nous allons maintenant interpréter Lu comme une m x m matrice à coefficients

dans (9 [d].



— 299 —

Pour w* g km on définit L„* comme étant la m x m matrice à coefficients

dans k [5] réduite de Lu*. Le z-y-coefficient de Lu* est donc

ôF- s dF-
(tz*,0,0...) + y ——- (m*, 0, 0 ôl.

3Xjy 37,/

Notons que par passage au quotient, ô induit la dérivation triviale sur
le corps résiduel k, il faut donc distinguer entre un opérateur différentiel à

coefficients dans k et l'application qu'il définit dans k. Par contre les

opérateurs différentiels à coefficients dans k commutent entre eux, on peut
donc définir det (Lu*) e k [ô].

2.11. Lemme. Soient % g k [X] et s0 entier tels que n (s) ^ 0 pour tout
s > Sq. Alors 71 (d) réalise une bijection isométrique de la boule {a g k ((x));
v (<a) > s0} sur elle-même.

Démonstration :

C'est évident puisque n (d) I as xs) I n (s) as xs.
S SQ S SQ

2.12. Proposition. Soit K k ((x)) et ô x — Soient F et G
dx

définies par les formules (2.7.1) et (2.7.2). Soit r\ g (F£ et posons n (ô)
det (Lfi g k [ô]. Soit Sq entier >0 tel que pour tout entier s > s0,
71 (s) # 0. Si l'on a v (G (rj)) > s0, il existe un unique u g 0m solution de

l'équation G (u) 0 tel que v(u-rj) > s0.
En particulier soit u* g km solution de G (u*) 0. Soit % (d)

det (Lu*) g k [5]. Si tz ne possède pas de racines entières >0, il existe un
unique relèvement u de u* solution de l'équation G (u) 0.

Démonstration : Notre hypothèse implique en particulier que n (ô) n'est
pas le polynôme nul. Il existe donc une m x m matrice M à coefficients
dans k [5] telle que

MLn tz(Ô)I

où / désigne la m x m matrice identité.
On a donc

MLn — 7t (8)1 xN

où N est une matrice à coefficients dans 0 [d] (ici 0 k [[x]] et x est
l'uniformisante canonique de K).
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Comme dans la proposition 2.8 on considère le développement taylorien
(2.8.1) de G, et l'on voit que l'équation G (u) 0 peut s'écrire, avec
w u — rj9

(2.12.1) 7i(d)w — [MG fi) +xN (w) + MQTJ(w)).

Soit U {z e v (z~rj) ^ s0}. Il est clair que si w e U le second

membre de (2.12.1) appartient aussi à U, et donc si l'on cherche une solution

de 2.12.1 dans U, il est équivalent d'écrire (puisque d'après le lemme 2.11

7i (d) est inversible sur U),

(2.12.2) w <P(w) déf-7i(a)-1(MG(7/)+xiV(w) + MÔ,(w)).

On vérifie facilement comme dans la proposition 2.5 que $ est une
contraction de U, ce qui montre que l'équation (2.12.1) possède une solution

unique.
Pour la deuxième partie de la proposition il suffit de prendre un relèvement

rj quelconque de u* (par exemple rj u*) et de prendre ^0 1.

d
2.13. Théorème. Soit K k ((x)) et ô x — Soit A e 0 [X] de

7 dx
degré m + n. Supposons que son image A dans k [X] se factorise sous la

forme

(2.13.1) Ä g*P*

où P* est unitaire de degré n.

1) Si g* (^É+s) est premier à P* (X) pour tout entier s > 0, il existe

un relèvement unique Qr,P' de g*, P* avec deg g m, degP n,

P unitaire, tel que

(2.13.2) A{8) Ô(3)P(0;).

2) Si P* (X+s) est premier à g* (X) pour tout entier s > 0, il existe

un relèvement unique Q\P' de Q*,P* avec deg g' m, degP' n,

P' unitaire, tel que

A(d) P'(3)g'(3).

3) Si P* (X+s) est premier à g* (X) pour tout s e Z, P, g, Pg'
les polynômes différentiel définis précédemment on a

D/DP ~ D/DPD/DQ ~ D/DQ', D\DA ~ D/DP ®D/DQ
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4) Soit s0 entier >0 tel que pour tout entier s > s0 ß* (^+^) soit

premier à P* (X). S'il existe un relèvement QuP\ de Q*,P* avec

deg ôi degPi unitaire et v (A (d) ~ Qt (d) P± (d), 0) >^0,
a/ors il existe Q,PeD uniques avec deg Q — m, deg P n, P unitaire,
v (P-Pu0) > s0,v (Q - Qu0) > s0 et A QP.

On a un énoncé similaire pour une factorisation A P'ô'.
Les théorèmes 2.9 et 2.13 sont les équivalents du classique lemme de

décompositions pour les modules différentiels dont on trouvera un énoncé

précis dans [Le] § 2.

Démonstration :

1) L'équation (2.13.2) peut s'interpréter comme un système de m + n

équations différentielles portant sur les coefficients (d'ordre < m — 1 et
d'ordre < n — 1 respectivement) de Q et P, et (2.13.1) représente le système
réduit. Il s'agit de montrer que le polynôme n (d), déterminant de LQ*} P*
ne s'annule pas sur les entiers >0.

Or, si l'on note l'espace des polynômes différentiels de degré <ra,
à coefficients dans k ((v)), l'application tangente PQ*jP* s'interprète comme
l'application de ^>m_1 x ^>n_1 dans w+n_1

U(5), V{8))u5)P* + (8) V(3).
Si

n m m—1 n-1
p* I Pi#, Ô* Z q,#, z Ut#, z ^i o i 0 i 0 i 0

on a

m-1 n m n-1 i

up* + q*v z Z uiPjdi+J+Z Z Z
Ï 0 7 0 j 0 7 0 1 0

Nous n'expliciterons pas la matrice de (qui a ses coefficients
dans k[d]) mais nous observerons que si dans cette matrice nous faisons
d 0 alors on obtient la matrice de l'application

U (X), F(X)) i-> U (X) P* (X) + (X) V(X)
U (X) P* (X) + F(X) Q* (X)

dont on a observé dans la démonstration du théorème 2.9 qu'elle était
inversible si et seulement si P* et Q*étaient premiers entre eux.
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En résumé n (0) ^ 0 si et seulement si P* (X) et Q* (X) sont premiers
entre eux.

De la relation

(d + syv= Ê
1 0

valable pour tout v e k ((x)), tout entier i > 0 et s entier, on voit que la
matrice £p*(x)>ô*(x+s) (d) de l'application

m-1 n

(U(d), V(ô))^ U(d)P*(d) + Q*(d + s) V(Ô) E Z uiPjdi+J
i =1 j=0

+ "z «I "z Z
i 0 j 0 Z 0

est ^p#(x),q*(x) (5 +s).
Par conséquent d'après ce qu'on vient de voir, n (s) ^ 0 si et seulement

si P* (Z) et ß* (X+.y) sont premiers entre eux.

Il suffit alors d'appliquer la proposition 2.12.

2) se démontre de même.

3) Supposons qu'on ait P1 Q' Q1P avec dtgP1 < deg P. Si

Pi # 0 (et donc 2i =£ 0) on peut se ramener au cas v (P1? 0) v (Ql9 0)
0. En passant au corps résiduel on obtient P1 2* — Q^P* avec

degPi < degP* et P± # 0 2i ^ 0 ce qui contredit l'hypothèse que
g* et P* sont premiers entre eux.

On applique alors le lemme 2.2.

4) Se démontre comme 1).

2.. 14. Applications.

2.14.1. Soit A e D avec v (A, 0) 0; on a

deg Ä N(A,0).

Si A n'est pas fuchsien, c'est-à-dire si deg Ä < deg A, en appliquant le

théorème 2.12 avec P* Ä et 2* 1, on obtient une factorisation de A
en un opérateur fuchsien et un opérateur totalement irrégulier (cf. 2.5.1),
ce qui nous redonne une démonstration différente du résultat 2.5.1.

2.14.2. Supposons maintenant que k est algébriquement clos de caractéristique

0.

i
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Soit A e D avec v (A, 0) 0, de degré n et supposons A fuchsien.

Alors Ä (qui est le polynôme indiciel de A) est de degré n. Notons X1 Xn

ses racines de telle sorte que si pour i < j Xt — Xj est entier, alors cet entier

est positif. Appliquons le théorème 2.12 avec P* (X) (X-Xf) et

g* c (X~Xn) (X-X2). On aura alors une factorisation A A1P1
où P1 relève P* et A1 relève g*. Par induction sur le degré de A on voit

que l'on al a factorisation A aPn...P1, avec Pt ô — rji, et

- XtExk [M].
On peut retrouver ce résultat de façon différente. Il est bien connu (cf.

[In] § 16.1) que l'équation Au 0 possède une solution formelle u xÄ1 v

avec vek [M]. Alors A se factorise sous la forme A A1P1 avec

D * 5M 7 rr T1Pt o - et I on a Xt + avec ex k I[x]
U U V V

2.15. Nous utilisons les notations du paragraphe 2.5.2. Si L désigne le

corps résiduel de L, alors le corps résiduel de E s'identifie à L(X). Par
d d

passage au quotient la derivation o — sur E donne la dérivation —
dx dx

sur L(X) qui n'est pas triviale. Nous noterons, pour me N, 0>m l'espace
des polynômes différentiels de degré <m à coefficients dans L(X). Nous
notons encore 0 l'anneau de valuation de E.

Théorème. Soit A e 0 [ô] de degré m + n. Supposons que son image
Ä dans L(X) [d] se factorise sous la forme

Ä Q*p*

où P* est unitaire de degré n.
Alors si l'application

(U, F)b> UP* + Q*V

de ^m-3 x &n-1 dans &\n+n-1 est injectivejl existe un relèvement unique
Q,P de Q*p* avec deg Q m, deg P n, P unitaire, tel que A QP.

On trouvera la démonstration dans [Dw] § 6. On montre de plus que si
les coefficients de A sont des éléments analytiques admissibles (cf. §2.5.3)
alors les coefficients de P et g le sont également.
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3. Application aux points singuliers irréguliers

Dans ce paragraphe nous supposons que la valuation de K est discrète
et que le corps résiduel est de caractéristique 0.

L'exemple le plus important est celui où K k ((x)) muni de sa valuation
x-adique avec k de caractéristique 0.

Donnons un autre exemple. Soit L un corps valué de caractéristique 0

muni d'une dérivation S, par exemple L k (y) ou L k ((7)) avec k de

à
caractéristique 0 et 5 — Prenons K L ((x)) muni de sa valuation

dy 7

x-adique. On mettra sur K l'unique dérivation continue d telle que ô (a)
ô (a) pour aeL et d (x) 1. (Nous ignorons si cet exemple présente

de l'intérêt).

3.1. Lemme. Soit K valué complet muni d'une valuation discrète et d'une
dérivation d continue, ayant un corps résiduel de caractéristique 0. Soit L
une extension algébrique de K. Alors la dérivation s'étend d'une façon
unique à L et l'on a

(3.1.1) aL(Ô)=aK(Ô).

Rappelons que la valuation de K s'étend aussi de façon unique à L,
car K est complet.

L'intérêt de ce lemme est de montrer que si P e DK est fuchsien en tant
qu'élément de DL il est également fuchsien en tant qu'élément de DK.

Démonstration. Il est bien connu que la dérivation s'étend de façon unique.
Tout ce qu'il faut montrer est la relation (3.1.1).

Si PeK[X], P 1 at X\ on écrira P' Zia^X1"1 et d (P)
Z d (ad X\
Par récurrence on peut se ramener au cas où il n'y a pas d'extension

algébrique de K entre K et L. Soit n [L:K\. Soit ueL\K. Comme la
valuation de K est discrète, il existe a e K tel que v (u —à) sup v (a — b).

Posons w u — a.
beK

Si L n'est pas ramifié sur K, il existe beK tel que w bz et v (z) 0.

Soient L et K les corps résiduels de L et K. Par construction de z on a

L K(z). De plus [L:K] [L:K\. Soit P eK[X] le polynôme minimal
unitaire de z. Alors P a ses coefficients dans l'anneau de valuation de K.
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Comme P(z) -0,et que F n'est pas le polynôme nul, on en déduit aussitôt

que F est de degré n et est irréductible sur K. Comme K est de caractéristique
nulle, P est premier avec P',etdonc P' (z) P' (z) ^ 0, soit v (P' (z)) 0.

Par ailleurs si P S at X\on a clairement (P) (z)) > inf (at) + a)

> a. Comme

d(z)P'(z) + (z) 0

on en déduit v (8(z)) > v(ô(P)(z))-v (P' (z)) > a a + (z). Comme

ô(w)/w 8(b)/b + ô(z)/z

on a alors

v (ô (w)) — v(w)> inf v(ô (b)) — v (b), v (z)) — v (z)) > a

et enfin, puisque v (u) v(a)<v (w) et 8 (u)/u 8 (à)/u + 8

v 8(u))-v(u) > infv(8(a))-v (m), v {8 (w))-v (u))

> inf (v (8 (a))-v (a), v (w)) (w)) > a

Si L est ramifiée, alors L est totalement ramifié et
n

où T (L) désigne le groupe des valeurs de Par construction de w,
r (L) est engendré sur T(K) par v (w), ce qui entraîne que,

n- 1

+ Z a{ X1 e K [X] étant le polynôme minimal unitaire de w, on a
i 0

nv (w) v (a0) < v (at) +iv(w) 1 < i < n - 1

n- 1

Mais alors, puisque wP' (w) nw" +I iai w\ on a
i= 1

v(wP'(w)) nv(w) v(a0)

car v (n) 0, K étant de caractéristique 0. Par ailleurs

v (ô (P) (w)) > inf (v (ad + a + iv (w)) v (a0) + a
O ^ i ^ n — 1

Comme d(w)P' (w) + 8 (P)(w)0, on en déduit

v(d(w)) -v(w) v(d(P)(w)) -v(wP'(w))> a.
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3.2. Théorème. On suppose que la valuation de K est discrète et le corps
résiduel de K de caractéristique 0. Soit P e DK, P ^ 0. Il existe une
extension finie L de K, des qt g L (1 <z<#) et des Pt e DL fuchsiens tels

qu 'on ait

1 )P(3) =PX (d-rj1)...Pq(d-rlq)
2) Dl/DlP(Ô) ~ © DLIDLPi{d-nfi
3) (Unicité). Dans la décomposition précédente on peut supposer que

les Pt ne sont pas constants et que v (qt — qfi < a pour i ^ j. Alors,
/ on a, dans une même extension L une deuxième décomposition P (<d)

P[ (d — Çfi P'r(d — Çr) où les P'i, vérifient les mêmes conditions

que Pif rji, on a r q et il existe une permutation a de l'ensemble
[1> 2, q] telle que v {q- ^(0) > a et

DL\DLPi (d - qt) - DLlDLP'a(î) (Ô - £rf(0) 1 < i < q

Démonstration :

1) et 2) Notons a et tb i 15 les valeurs exceptionnelles <a,
associées à P. Soit x une uniformisante de TT. On appelle rang de Poincaré-
Katz r{P) (a— inf t()/v (x). Nous allons démontrer le théorème par

i^O
une double récurrence sur (deg P, r (P)) ordonnés par l'ordre lexicogra-
phique; la récurrence commence soit à deg P 1 où le résultat est évident,
soit à r (P) 0 où il est aussi évident puisque cela signifie que P est fuchsien.

(La récurrence ne porte sur r (P) que pour les valeurs entières de r (P)).
D'après le théorème 2.3 et le corollaire 2.5 on peut se ramener au cas

où P est ^-extrémal avec t1 < a (et alors r (P) (a — t^/v (x)). Deux cas

peuvent se présenter.
Cas 1. t1 n'appartient pas au groupe de valuation de K (c'est-à-dire

r (P) n'est pas entier). Soit L l'extension de K déterminée par le polynôme
P (X) et soit q eL une racine de P (X). On a ^ v (q) sup v (q — z).

zeK
Comme le corps résiduel de K est de caractéristique nulle, d'après Ax [Ax],
il existe un conjugué q' de q sur K avec v(q' — q) t±. Soit R (X)

P (X+q). Le polynôme R s'annulant en 0 on a n (P, tx) > 0; comme
q' — q est racine de R et v (q' -q) t±, on a N (R, t^) — n (P, t^) > 0.

Il résulte alors de la proposition 1.11 que l'on a n(P(d + q),t1)
/i(P,^) >0 et N(P(d + q),tl) - n{P(d + q\t1) N(R,t±)

— n (P, q) > 0; le corollaire 2.5 nous permet alors d'abaisser le degré
de P.
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Cas 2. t1 appartient au groupe de valuation de K (c'est-à-dire r (P) est

entier). Soit L1 l'extension de K déterminée par le polynôme P (X) et soit

L l'extension maximale non ramifiée de K dans Lx. Si £ est une racine de

P (X) (appartenant à LJ il existe rj eL tel que v (Ç-rj) > v (£j) v (rj)

tx. Posons R(X) P(X+rj). On a alors n(R, tx) > 0 et d'après la

proposition 1.11 n(P(d + r\), /x) > 0. Si n(P(d + rj), tjj) < N (P (d + rj), t±)

on peut abaisser le degré de P grâce au corollaire 2.5. Si n(P(d + rj), t±)

N(P(d + rj), tj) alors t± n'est pas exceptionnel pour P(d + rj) et l'on a

r(P(d + rjj) < r(P(ô)). L'hypothèse de récurrence nous permet alors de

conclure.

3) Commençons par quelques remarques qui découlent directement
des définitions et de la proposition 1.11. Soit P e DK, fuchsien (c'est-à-dire
a-dominant). Si v (rj) > a alors P (d + rj) est également fuchsien (car P (8)
et P (d + rj) ont même fonction de valuation pour t < a). Si v (rj) < a, alors
P (d + rj) est v (rç)-extrémal (en effet P (X) a-dominant signifie que toutes les

racines de P (X) dans la clôture algébrique de K sont de valuation > a,
alors R(X) P(X+rj) a toutes ses racines de valuation v (rj) ce qui
entraîne que R est v (rç)-extrémal et donc P (d + rj) aussi d'après 1.12).

Soit alors P le polynôme de l'énoncé et P (d) Pl (d — rj^ Pq (d~rjq)
une de ses décompositions comme en 1). Soit rj e L. Si v (rj — f]j) > a,
Pi (d + ri-rjj) est fuchsien et N(Pt (d + rj-rjj), a) degP^. Si v(rj~r\j) < a,

Pi(d + rj-r]i) est v (ri - rj j-extrémal et N(Pt (d + rj-rjj), a) 0. D'après le
théorème 1.6 on a alors N(P(d + rj), a) 1 deg Pt.

V

Démontrons 3). Il est clair que dans la décomposition 1) on peut
supposer les Pt non constants. Pour montrer que, l'on peut supposer v (rji-rjj)
< gc pour i # j on va procéder par induction sur le degré de P. D'après 1)
il existe rj eL (par exemple rj rj^) tel que N(P (d + rj), oc) i=- 0. D'après
le théorème 2.4 on a une factorisation P (d + rj) - P' (d) Q(d + ij) avec
P' fuchsien et N(Q (d + rj), a) 0, et de plus on a

Dl/DlP (d) — DJDlPi (d + rj^j) © DJDLQ (d)

deg Q < deg P. Si maintenant dans la factorisation de Q,

fi (3) fii(3-£i).-. fir(3-W
avec v (Çt - Çj) < a pour i ^ j on avait un indice i pour lequel v (£, t — rj) > a,
alors on aurait N (Q (d + rj), a) N{Q(d + ^j), a) deg Qt > 0 ce qui
donne une contradiction.
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Considérons maintenant une deuxième décomposition P (d)
P[ (d - £1)... P, (5 - £r), Alors JV (P (5 + |y), a) deg Pj. S'il n'y avait

aucun indice i tel que v (Çj-tji) > a on aurait, puisque P(d + <L)

Pi (ô + ^.-j/i) ...P4 (3 +^1N(P(d + Çj),a) 0 ce qui est une
contradiction. Il y a donc un rjt avec y (£,• —rçf) > a et cet ^ est évidemment

unique. Par suite de l'unicité du facteur fuchsien établie au théorème 2.4 on a

DJDl P; (d) ~ Dl/Dl Pt {d + ^ - ^) et donc DL/DL Pj (Ô - £y)

- DJDLPl(ô-rii).

3.3. Perturbations.

Nous nous limitons désormais au cas K k ((x)) avec k de caractéristique

0. Pour simplifier nous supposerons k algébriquement clos. Nous
d

prenons la dérivation d x — Alors a 0.
dx

Si P est fuchsien et unitaire, alors P a ses coefficients dans l'anneau de

valuation 0 de K. Le polynôme réduit P vu comme élément de k [X] s'appelle
le polynôme indiciel. On a bien sûr deg P deg P.

Soit P g Dk. Soit N iV (P, 0). Alors z; (a^1P, 0) 0, c'est-à-dire

afi1 P e (9 [d], par réduction on voit que
1 P est le polynôme indiciel de

son facteur fuchsien (rappelons qu'on peut factoriser P à gauche ou droite,
les polynômes différentiels ainsi obtenus ne sont pas les mêmes mais ils

ont même polynôme indiciel). Il en résulte immédiatement que si pour
P, Qe Dk on a v (P- g, 0) > v (P, 0) alors les facteurs fuchsiens de P
et g ont même polynôme indiciel.

Théorème. Soit P e DK; soient t0 0 > t1 > > fr /es valeurs

exceptionnelles associées à P, posons st — N (P, *f) — w (P, ?f) (on a

> 0).

1) Soit g g Dk, avec deg g deg P, vérifiant

(3.3.1) v (P - g, O > ü (P, û) ~ 0 < i < r

SbzY P (d) Pi (d — f/i) Pq (d — rjq) une décomposition de P, avec

PDL fuchsiens et ^gL vérifiant v (rji-rjj) < 0 pour i A j\L fc((x1/p))
wfte extension algébrique de K. Alors g admet la décomposition

Q(ß) Qi(d-ni) — Qq(d-tit)

où les gf g Dl sont fuchsiens et Qt et Pt ont même polynôme indiciel



2) Soit m le plus grand entier > 0 tel qu 'il existe deux racines X et jn

d'un même polynôme indiciel d'un des opérateurs fuchsiens Pt vérifiant
| X - p | m. Si Qe Dk, avec deg Q deg P, vérifie

(3.3.2) v(P~Q, tt) > v (.P, tl) - sJi + m 0 < i < r

on a

DrIDKQ — DK/DkP -

3) Si Qe Dk vérifie (3.3.2), il existe un sous-Démodule N de

Dr!Dk Q tel Que

Dk/DKQ — DRIDRP

Démonstration :

1) Pj (d) est le facteur fuchsien de P (d + rjj). Ce que l'on doit vérifier
est que Q (ô + rjj) possède un facteur fuchsien qui a même polynôme indiciel

que Pj. Il suffit pour cela que l'on ait

(3.3.3) v(P(Ô + nfi-Q(ô+ rjjfi 0)>v(P(ô+ rjj), 0)

Si v (rjj) >0, (3.3.3) équivaut à la condition (3.3.1) pour i 0.

Si v (rjj) < 0, alors v (rjj) est une valeur exceptionnelle, soit v (rjj) t{.
Mais alors en vertu des propriétés de la fonction de valuation

(3.3.4) v(P(d+ nj) —Q(5+ rjj), 0)>v(P(Ô+ )-6(3 + >1j),

v (P (d) —Q(ô),

Par ailleurs, on a n (P (8+ rjj), r;) < st (car cette inégalité est vraie dans
le cas commutatif) d'où

(3.3.5) v (P (d+ rjj), 0) <v(P(d + rjj), t) - ttn (P (d+rjj), f;)

< v(P (3), t;) - tiSi.

La conjonction de (3.3.1) (3.3.4) et (3.3.5) nous donne (3.3.3).
On a donc les facteurs de Q: 6i - Qq (d-rjq). Comme

deg 6 deg P £ deg P; £ deg Qt
i=l i=l

il n'y a pas d'autres facteurs.

2) Pour déterminer complètement DJDLP il faut déterminer les

DlIDlPj Or d'après la théorie de Fuchs si
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(3.3.6) v(Pj(d)-Qj(d), 0) > m

on a DJDl Pj ~ DJDL Q}. Mais comme, si l'on a choisi P} et Qj unitaires,

v (p, (a) - Qj (a), o)>v(p(d + -Q(a+^), o)

grâce à (3.3.4) et (3.3.5) on voit que (3.3.2) entraîne (3.3.6). Par conséquent
on a Dl/DlP — DL!DL Q et donc DK/DK P — DKfDK Q.

3) Soit Z une extension de K où l'on peut factoriser P et Q. Le raisonnement

précédent nous montre qu'on a

ô(5) Qi(d-ri1)...Qq(d-riq)Q'(d)

et DJDl Q © DJDl Qiid-rjù © DL/DL Q(Comme on n'a pas
i

fait l'hypothèse deg P deg g on n'a pas nécessairement g' constant).
D'après 2)

Dl/Dlp~© DLIDLPi (d -© Qi -
i i

d'où

dl\dlq^dl\dlp ®djdlq*
Mais comme DJDL g DK/DK g ® L et DJDLP ~ DK/DKP 0 L,

x x
la décomposition précédente provient d'une décomposition du Z>x-module

ß.
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