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LEMMES DE HENSEL
POUR LES OPERATEURS DIFFERENTIELS.
APPLICATION A LA REDUCTION FORMELLE
DES EQUATIONS DIFFERENTIELLES.

par P. RoBBA

INTRODUCTION

Y . :
Etant donné un systéme différentiel — = MY, ou M est une matrice
X

méromorphe en 0, on sait qu’il existe une base de solutions formelles de la

forme
-1
eP(t ) + C log tgb(t)

avec t¥ = x pour un entier p convenable, ol P est une matrice diagonale a
coefficients polynomiaux, C est une matrice constante et @ est une matrice
eGl,(C [[¢]]). (Cf. Turittin [Tu], Wasow [Wa], Katz [Ka], Levelt [Le],
Malgrange [Ma 1]).

Si maintenant on considére une équation différentielle linéaire d’ordre n,
on sait de fagon classique ramener son étude a celle d’'un systéme différen-
tiel. Réciproquement d’ailleurs, I’étude d’un systéme différentiel se ramene,
erAce au lemme du vecteur cyclique ([De], Lemme II.1.3), & celle d’une
équation différentielle.

Si dans le cas des points réguliers et des points singuliers réguliers,
I’étude d’une équation différentielle se faisait directement, (voir par exemple
Ince [In]), dans le cas d un point singulier irrégulier on considérait toujours
le cas des systémes. Or, récemment, Malgrange [Ma2] a proposé une méthode
directe de réduction des équations différentielles. Sa méthode consiste a
obtenir une factorisation formelle (c’est-a-dire a coefficients séries formelles)
d’une équation différentielle associée a la décomposition de son polygone
de Newton. Les énoncés qu’il obtient sont tout a fait analogues aux lemmes
de Hensel classiques de factorisation des polynémes dans les corps valués
ultramétriques complets (voir [Am] par exemple). Signalons que dans le
contexte différent des équations différentielles p-adique d’autres résultats

du type lemme de Hensel avaient déja été obtenus par Dwork et moi-
méme [Dw].
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Je me propose de traiter ici dans son cadre le plus général le probléme
de factorisation des opérateurs différentiels. On verra que les polyndémes
différentiels se comportent approximativement comme les polyndmes
(commutatifs). Je m’efforcerai d’ailleurs, chaque fois que cela sera possible,
de conserver les définitions et les démonstrations utilisées dans le cas
commutatif. On montrera ensuite comment ces théorémes de factorisation
(lemmes de Hensel) permettent d’étudier une équation différentielle prés
d’un point singulier irrégulier.

Dans la premiere partie on introduit la fonction de valuation d’un opé-
rateur différentiel a coefficients dans un corps valué ultramétrique et on
établit ses principales propriétés. Dans 1’étude des propriétés de factorisa-
tion d’un polyndéme, une longue tradition qui remonte a Newton veut que
I’on fasse intervenir le polygone de Newton. (Ainsi Malgrange a la suite
de Ramis [Ra] utilise le polygone de Newton d’un opérateur différentiel).
Sil’on appelle fonction de Newton la fonction dont le graphe est le polygone
de Newton, fonction de Newton et fonction de valuation sont mises en
dualité par une transformation de Legendre ainsi que I’a observé Lazard
[La]. Or I'outil vraiment commode pour les démonstrations est la fonction
de valuation. De plus la fonction de valuation s’étend de fagon naturelle
aux fractions rationnelles et aux polyndmes a plusieurs variables, ce qui
n’est pas le cas pour le polygone de Newton. A mon avis, le seul avantage
du polygone de Newton est que, dans les exemples numériques, il est plus
facile a tracer que le polygone de valuation.

Dans la deuxiéme partie on établit différents théorémes de factorisation.
On montre d’une part qu’il existe une factorisation d’un polynéme diffé-
rentiel liée a la présence de sommets sur son polygone de valuation. On
montre d’autre part comment une factorisation approchée peut €tre raffinée
en une factorisation exacte.

Dans une troisiéme partie on montre comment ces théorémes de facto-
risation nous permettent d’obtenir la réduction formelle d’une équation
différentielle au voisinage d’un point singulier irrégulier. La démonstration
que nous donnons ne différe guére de la démonstration de Malgrange dans
[Ma 2]. Nous montrons que le module différentiel associé a un opérateur
différentiel ne change pas pour de petites variations des coefficients. Un
tel résultat a été obtenu par Malgrange [Ma 2], mais nous améliorons ses
estimations et I'utilisation de la fonction de valuation nous permet d’éviter
de longs et fastidieux calculs.

Je tiens a remercier D. Bertrand qui m’a indiqué les résultats de Mal-
grange et avec qui j’ai eu d’intéressantes discussions sur ce sujet.
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1. FONCTION DE VALUATION D’UN POLYNOME DIFFERENTIEL

1.1. Soit K un corps valué ultramétrique complet muni d’une dérivation
5. On note v la valuation de K et « (9) (ou « si aucune confusion n’est a
craindre) le nombre
«(0) = inf w(0(a) —v(a).
acK,a#0

On suppose dorénavant que « (d) > — co; cecl signifie que la dérivation
est continue. La dérivation est triviale si et seulement si « = + oo0.

On note Dy (ou D si aucune confusion n’est & craindre) I'anneau des
opérateurs différentiels & coefficients dans K, i.e. 'ensemble des sommes

finies P = X a; &' (¢,eK) muni de ’addition évidente et de la multiplication
définie par 00’ = 0'*J, da = ad + 0 (a).

1.2. Pour tout teR = RU {— 0, +0} et P = Xa;0°e Dg on pose

On note N (P, t) (resp. n (P, t)) le plus grand (resp. le plus petit) entier i
tel que v (a;) + it = v (P, t).

Si P est le polyndme nul on pose, pour tout ¢, v (P,t) = + o0 et
N(P,t) = n(P,t) = — 0.

La fonction ¢+ v (P, t) est appelée la fonction de valuation de P. Cest
une fonction continue, concave, affine par morceaux. Son graphe est appelé
le polygone de valuation de P. 1l est clair que N (P, t) (resp. n (P, t)) est la
dérivée a gauche (resp. a droite) de v (P, #). Ona pour toussetzdeR, ¢ < s

NO>n({)>N(@G)>=n(s).

On dit que reR est une valeur exceptionnelle (pour P) si N (P, t)
# n (P, t). les valeurs exceptionnelles pour P sont en nombre fini.

Pour des raisons qui apparaitront au § 1.8, on considére que la fonction
v (P, t) et la fonction N (P, t) ne sont définies que pour ¢t < « () et que la
fonction # (P, t) n’est définie que pour ¢ < « (0).

1.3. Propriétés de la fonction de valuation dans le cas commutatif.

Nous allons rappeler les principales propriétés de la fonction de valuation
dans le cas commutatif. Nous utiliserons certaines de ces propriétés par la

L’Enseignement mathém., t. XXVI, fasc. 3-4. 19
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suite. Nous donnons une idée des démonstrations de ces propriétés. On
trouvera les démonstrations détaillées par exemple dans [Am].

1.3.1. Soit Pe K [X], soit x # 0 de K. On a v (P (x)) >v (P, v (x)) et
on a I’égalité si v (x) n’est pas exceptionnel pour P. (C’est évident).

1.3.2. On déduit facilement de 1.3.1 que si la valuation de K est dense
on a pour tout teR, v (P,¢) = inf v(P (x)), ce qui relie la fonction de

v(x) >t
valuation a la norme de la converge)nce uniforme.
Pour ¢tablir les propriétés de la fonction de valuation on peut toujours
supposer, quite a considérer un surcorps de K, que la valuation de K est
dense, ce que nous ferons désormais.

1.3.3. Pour tous P, Qe K [X] et tout e R,
v(PQ,1) =v(P, 1) +v(Q,0).

D’aprés 1.3.1 c’est évident lorsque ¢ n’est exceptionnel ni pour P ni pour
Q ni pour PQ et que ¢ appartient au groupe des valeurs de K. Par continuité
la propriété s’étend a R.

1.3.4. Par dérivation on déduit de 1.3.3 que
N(PQ,n) = NP, 1)+ N(@Q,n) et n(PQ,1) =n(P,1) +n(Q,1).

1.3.5. En décomposant P en facteurs du premier degré dans la cléture
algébrique K de K, on déduit facilement de 1.3.4 que

N (P, t) est le nombre de zéros de P dans K*¢ de valuation > ¢
n (P, t) est le nombre de zéros de P dans K de valuation > ¢
N (P, t) — n (P, t) est le nombre de zéros de P dans K de valuation .

Les valeurs exceptionnelles pour P sont donc les valuations des zéros de P
dans K.

1.3.7. Soit PeK[X] et soit neK. Alors pour t <<v(y) on a
v(P(X+n),t) =v(P(X),t). Cela se montre en utilisant 1.3.2 et en
remarquant que, pour ¢ <<v (), les disques {XeK,v(X+n) > t} et
{XeK,v(X) >t} coincident.

1.4. Bien que nous ne l’utiliserons pas par la suite, nous allons introduire
le polygone de Newton d’un opérateur différentiel afin de faire le lien avec
les travaux d’autres auteurs.
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Le polygone de Newton de P = X a; 0' € Dy est la frontiére de I’enve-
loppe supérieure convexe des points (i, v (a))) e R%. Notons Nw (P, t) la
fonction dont le graphe est le polygone de Newton de P. Les fonctions
—v(P,t) et Nw(P,t) sont mises en dualité par une transformation de
Legendre (cf. [La] § 1.10 pour plus de détails). En particulier les valeurs
exceptionnelles pour P sont les pentes des c6tés de son polygone de Newton
changées de signe.

Comme nous ne considérons la fonction de valuation que dans ’inter-
valle (— o0, «]; nous ne conservons que les c6tés du polygone de Newton
de P de pente > — a.

1.5.  Addition.

PROPOSITION. Soient P et Q€ Dg. On a pour tout t

v(P+Q,t) > inf (v(P,1),v(Q,1).

On a égalité si v(P,t) #v(Q,t) ou si N(P,t) # N(O,t) ou si
n(P,t) # n(Q,1).

C’est évident.
1.6.  Multiplication.

Les propriétés que nous allons établir dans ce paragraphe et les suivants
montrent que, pour 7 <L« et moyennant un terme correctif, du point de
vue de la fonction de valuation tout se passe comme si la dérivation commu-
tait avec la multiplication par les éléments de K.

PROPOSITION. 1) Soient P (X), Q (X)eK[X] et soient P (0), Q (9)
les opérateurs différentiels associés. Soit R (X) = P (X) Q0 (X)eK[X]
et soit R (0) I'opérateur différentiel associé. On a pour tout t <

v(R(a)—-P(a)Q(a),t)>v(P,t) +v(Q,1) +a —t.

2) Soient P, Q € Dy. Pour t <da ona
v(PQ,1) =v(P,1) +v(Q,1)
N(PQ,t) = N(P,t) + N(Q,1).

Pour t < o ona

n(PQ,1) = n(P,1) + n(Qr).
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Démonstration :
1) Vérifions le pour P (X) = X'et Q(X) = a.On a
adt —da = — Y (j)d(a)od
j=1
d’ol pour ¢t <«
v(ad'—d'a,t) > inf (v(a)+ju+(i—j)t) =v(a) +it +oa —¢.
i1

Soient maintenant P (X) = X a; X'et Q(X) = 2b; X/.On a

J

R(@® —P@Q@) = Y ay(bo'—0b,)e .

i, J
Par conséquent, utilisant 1.5, on obtient
v(R(0)—P(3)Q(0),t) > inf (v(a)+v (b)) +it+jt+ua —1)
i, j
= inf (v(a) +it) + inf (v(b)) +jt) + o — ¢
i Jj

ce qui termine la démonstration.

2) D’aprés 1.3.3 on a v(R,t) =v(P,t) +v(Q,t). Pour t < a la
relation annoncée s’en déduit grace a 1) et a la proposition 1.5. Le cas
t = o s’obtient par continuité.

1.7. Adjonction.
Soit P = X a; 0" € Dg. Son adjoint est I'opérateur P* = X (—1)! 6’ a,
cf. [In] (5.3). On voit comme dans la proposition précédente que I'on a

pour ¢ < o
v(P*,1) = v(P,1).

1.8. La proposition 1.6. 2) n’est plus vraie pour ¢ > «a. En effet soit
ack, avec 0(a) # 0. Soit P = 0, Q = a; ona PQ = ad + 0 (a) et donc
pour ¢ > v (0 (a)) — v (@) on aura

v(PQ,1) = inf (v(d(a)),v(a)+1t) =v(d(a) #v(P,t) +v(Q,1)
=v(a) +t.
Cest pour cette raison qu’on considére que la fonction de valuation
v (P, t) n’est définie que pour ¢ <a. On notera que, quelle que soit la

représentation de 1'opérateur Pe Ky, P = X a; 0'b;, on a toujours pour
t <a,v(P,t) = inf (v(a) + v (b)) + ir). *
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1.9. Homothétie.

PROPOSITION. 1) Soit P (X)eK[X] et soit P(0) [’opérateur diffé-
rentiel associé. Soit € € K. Notons R(X) = P((X)e K [X] et soit R (0)
I’opérateur différentiel associé. Pour t <o ona

v(R(O)—P(D), 1) =>v(P,t+v(d) + o« — 1.
2) Pour t < a ona

v(P(d),1) = v(P(0),t+v(9).

Pour éviter toute ambiguité indiquons que si P (9) = X a; 9", alors
R@) = ZXa,E 0" et P(ED) = X a; (£0)".

Démonstration :

1) Vérifions ’assertion pour P (d) = 0°. On fait une récurrence sur i
Pour i = 1 c’est vérifié¢ puisque R (0) — P (£0) = 0.

Posons &' 0° — (£0)' = Q, (9).

Alors Q;11(0) = £0Q;(0) —id(&) & d"

Notre hypothése de récurrence est
0(Q;(0),1) =i (&) +it + o —t.

En appliquant 1.5 et 1.6 on obtient a 'ordre i + 1

v(Qi+1 (), t) > inf (v (£3Q; (9), 1), (i + D v (&) + o + i)
=(@(+Do(&) +@(+Dt +a—t.
Soit maintenant P (X) = Xa; X. On a R(9) — P (&0) = Z a; 0;(9).
En tenant compte de 1.5 on obtient donc l
v (R () —P (&), 1)> inf (v (a;) +i(t+v (&) + o —1)

=v(P(0),t+v(&)) + o« — ¢,

2) Dans le cas commutatif on a v (R, t) = v (P, t+v (f)), cela se voit
facilement en appliquant 1.3.2. Alors en appliquant 1) et la proposition 1.5

on obtient la relation annoncée pour ¢ < a. Le cas ¢ = « s’en déduit par
continuité.
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1.10. Remarque.

Dans le cas ou la dérivation n’est pas triviale, la proposition précédente
suggere d’associer au polyndme différentiel P (0) la fonction

w(P(9),1) = v(P(0),t+x(d))

définie pour ¢ < 0. Cette fonction est liée de fagon plus intrinséque a
Iopérateur différentiel et ne dépend pas de la dérivation choisie pour le
représenter. En effet, soit £ e K, &€ # 0, et considérons la dérivation 6 = &o.
Ona a(d) = a (0) + v (&). Maintenant 'opérateur différentiel P (0) est
représenté & I’aide de la dérivation 6 par Q (6) = P (£~'0). On aura donc
griace a la proposition 1.8, pour ¢ <0

w(Q(9),1) = v(Q(9),t+a(d) = v (P(d),t~v(&)+a(d)+v (L)
= w(P(9),1).
Une telle normalisation n’est évidemment pas possible dans le cas
commutatif (dérivation triviale).
Pour garder notre exposé aussi proche du cas commutatif que possible

nous utiliserons la fonction v (P, ) et non la fonction w (P, ¢), préférant,
quand cela sera nécessaire, choisir une dérivation 0 telle que « () = 0.

1.11. La fonction de Gerard-Levelt.

Soit k un corps et soit K = k ((x)) muni de sa valuation x-adique. Consi-
d :
dérons sur K la dérivation ¢ = x e Onaoa(d) =0.S51P=2a;d e Dy,
X

P d’ordre m, on voit facilement, compte tenu de la proposition 1.8, que la
fonction p, (P) de Gerard-Levelt introduite par Ramis [Ra] a la suite de
Gerard-Levelt [Ge] est liée a la fonction de valuation par la relation

p,(P) =v(a,) —mk —v(P, —k) k>0.

| Le polygone de Newton 2% (P) considéré par Ramis [Ra] puis Mal-
grange [Ma] est le polygone de Newton de P prolongé par un c6té de
 pente 0 pour remplacer les éventuels cotés de pente <O que I'on doit
~ supprimer (cf. § 1.4).

|

- 1.12.  Translation.

ProrosiTION. 1) Soit P (X) e K[X] et soit P(0) ['opérateur diffé-
- rentiel associé. Soit ne K. Posons R(X) = P(X+n)eK[X]. On a pour
| ¢ <inf (¢, v ().
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v(R(@)—P(@—l—n},t)>v(P(6),t) + o —t.
%) Pour t < inf (a,v (1)) ona
v(P(8+n),1) =v(P(d),1).
Siv(n) <o ona
n(P(0+n),v(n) = n(R,v(n)).

Démonstration :

1) Vérifions le pour P (0) = 0. On fait une récurrence sur i. Pour
i = 0 c’est vérifié puisque R () — P(0+n) = 0.

Posons X (/077 — (@+n)' = 0,(9).
j =0

J
i

Alors Qyr4 (0) = (0+n) Q;(9) — _21(§)j5 (myn=* o'

J:

Notre hypothése de récurrence est
v(Q; (D), 1) =it +a—t si 1< inf (o, v (1)) .
En appliquant 1.5 et 1.6 on obtient a I'ordre i + 1

v (Qi41(0), 1) > inf (v(Q;(9), 1) + inf [v (n), 7], inf [a+jo(n)
1=j =i
+ (=)
>it4+a=i(+1)+a—t si t<inf(a,v().
Soit maintenant P (X) = X g X.OnaR@®) —P@+n) = Z a; Q;(0).

i
Par conséquent, en utilisant 1.5, on obtient pour ¢ < inf (, v @)

V(RO —P(0+mn),1) > ir}f(v(ai)—l—it«koc—-t) =v(P,t) +a —t.

2) Pour ¢t <v(yn) on a, d’aprés 1.3.7, v (R, t) = v (P, t); d’ou, si de
plus ¢ < o, v(P(@+1n),t) =v(P,t). (Le cas éventuel ¢ = « s’en déduit
encore par continuité).

Siv (1) < o on vient de voir que

v(R(@)—P(@+n),t) >v(R(0),t) pour t =u(y);

~ donc, par continuité, ceci reste vrai dans un voisinage de v (1) et alors on
a dans ce voisinage v (R (), t) = v (P (d+n), t), ce qui entraine I’égalité
- des derivées a droites en ¢ = v (), c’est-a-dire la formule annoncée.
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1.13. Continuité de la division.

Rappelons que Dy est un anneau euclidien aussi bien pour la division a
droite que la division a gauche.

Définitions. Soit P € Dg, P # 0. On dit que P est t-dominant si N (P, t)
= deg P. On dit que P est t-extrémal si N(P,t) = deg P et n(P,t) = 0.
On peut encore dire que P est ~-dominant s’il n’a pas de valeurs exception-
nelles < ¢, et qu’il est z-extrémal si sa seule valeur exceptionnelle est . Dans
le cas commutatif P est r~-dominant (resp. z-extrémal) si tous ses zéros dans
K¢ sont de valuation > ¢ (resp. = t) ainsi qu’il résulte de 1.3.6.

PROPOSITION. Soit P € Dy, t-dominant avec t < a. Soient A, Q, Re Dy
tels que

A =QP + R deg R < degP.

On a alors

v(Q,t) >v(A,t) —v(P,t), v(R,t)>v(A4,1).

Méme énoncé pour la division a gauche : = PQ" + R

Démonstration : On a
N(QP,t) = N(Q,t) + N(P,t) > N(P,t) = degP > degR > N(R,?).
On a donc d’apres 1.5
v(QP +R,t) = inf (v(QP, 1),v (R, 1)).

D’ou le résultat en appliquant 1.6.

1.14.  Opérateurs fuchsiens.
d
Considéronslecas K = k ((x))avecd = - (cf.§1.11).Onawa (0) = —1.
X

Il est facile de voir que dire que P est (— 1)-dominant équivaut a dire que P
vérifie la condition de Fuchs, (poir singulier-régulier).

Par analogie on dira dans le cas général que P € Dy est Fuchsien si P
est a-dominant. Comme a la remarque 1.10 on voit que cette propriété ne
dépend que de I'opérateur différentiel et pas du choix de la dérivation.
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2. LEMMES DE HENSEL

Dans ce paragraphe il est essentiel de supposer que K est complet pour
sa valuation.

2.1. Dans le cas commutatif il existe deux types de lemmes de Hensel.
Une propriété de factorisation d’un polynéme relativement aux valeurs
exceptionnelles qui lui sont associées (pentes du polygone de Newton).
Pour les polynémes différentiels on aura exactement la méme propriété
pour les valeurs exceptionnelles < « (pentes > — «) (corollaire 2.6). Toute
la partie correspondant & ¢ > « sera regroupée en un seul facteur fuchsien
(x-dominant) (théoréme 2.4).

Par ailleurs pour un polynéme a coefficients dans I’anneau de valuation
de K, st par passage au quotient on a une factorisation dans le corps résiduel
en facteurs premiers entre eux, cette factorisation se releéve. Dans le cas des
opérateurs différentiels pour pouvoir passer au quotient il faut d’abord
supposer que la dérivation envoie I’anneau de valuation de K dans lui-
méme, c’est-a-dire que o >0. Si « > 0, la dérivation est triviale sur le
corps résiduel, donc par passage au quotient les polyndmes différentiels
commutent; alors une factorisation en facteurs premiers entre eux se reléve
(théoréme 2.5). Dans le cas « = 0 on ne peut pas obtenir de résultat géné-
ral. Chaque cas d’espéce demande un traitement particulier. Le cas parti-

d
culier K = k ((x)) et = x -, sera traité plus loin (Théoréme 2.13).
X

2.2. LEMME. Soient A, P, Q,P’', Q'€ Dy tels que
()4 = QP =P'Q’
(2) deg P = deg P’ (deg Q = deg Q)

(3) pour tous P,QeD,deg P <degP et PQ = QP entrainent
P=20=0.

Alors  on a D|DP ~ D/DP’', D]DQ ~ D/D(Q’, D/DA ~ D/DP
® D/DQ. (Les isomorphismes étant des isomorphismes de D-modules &
 gauche).

Pour la notion de D-module on renvoit & [Mn].
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Démonstration (MALGRANGE). On considére la suite exacte de D-modules

a gauche
A

0
0 - D/DQ - D/DA — D/DP — 0

ou la premicre fleche (resp. la seconde) est définie par passage au quotient
a partir de la multiplication a droite par P (resp. a partir de I'identité). De
méme on a la suite exacte

ll ul

0 - D/DP' - D/DA - D/DQ’' - 0.

Nous allons montrer que le morphisme ul’ est un isomorphisme de
D/DP’ sur D/DP. Comme ces deux modules sont finis et de méme rang
sur K, 1l suffit de montrer que ul’ est injectif. Or, soit ¢ € D/DP’ tel qu’on
ait uA’ (o) = 0. En relevant ¢ en S e D cela signifie qu’on a SQ’ € DP.
L’ensemble des S vérifiant cette derniére condition est un idéal a gauche
de D contenant P’, et il suffit de montrer que P’ engendre cet idéal. Si
c’était faux, le générateur P de cet idéal serait de degré < deg P’ et I’on
aurait la relation PQ’ = QP, ce qui est incompatible avec (3).

(On montre de méme que u'A est un isomorphisme de D/DQ sur D/DQ’).

Mais alors I’application A’ (uA") ™' est un relévement de u ce qui démontre
la derniere assertion.

2.3. Remarque.

On a observé dans la démonstration précédente que si I’on avait une
factorisation 4 = QP, on identifiait de fagon canonique D/DQ a un sous-
module de D/DA. Réciproquement soit N un sous-D-module du D-module
M = D|/DA. Soit m I'image dans M du polynéme constant 1 de D, c’est
un vecteur cyclique de M et 'on a Am = 0. Soit u I'image de m dans le
D-module quotient M/N; u est un vecteur cyclique de M/N. Si Pe D est
le polynéme différentiel unitaire minimal que annihile u, alors P divise 4
et M/N ~ D/DP. Soit A = QP, D/DQ s’identifie avec le noyau de I’appli-
cation quotient M = M/N, donc D/DQ ~ N. On voit donc qu’il est
équivalent d’étudier la factorisation de 'opérateur A et de rechercher les
sous-modules du D-module D/DA.

2.4. THEOREME. Soit A € Dg. Soit t <a.

1) Il existe Q,Pe Dy avec P t-dominant, deg P = N (A4,t), tels
que A = QP.
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2) (Unicité). Si ’on a une autre décomposition A = Q P vérifiant
les mémes conditions, il existe a # 0 de K tel que Qi = Qa~' et
P, = aP.

3) Il existe Q',P' e Dy avec P’ t-dominant, degP’' = N (4, t),
tels que A = P’ Q.

4) Ona D/DP ~ D/DP’, D/DQ ~ D/DQ’, D/DA ~ D/DP & D|DQ.

Démonstration :

1) Soit A = X a;0'. Posons N = N(4,t). Posons P, = X a; 0.

i=N

On définit P, Q,, R, de Dy par les formules de récurrence
A = QnPn +Rn deg Rn <dean
Pn+1 = Pn + Rn .
Soit A =v(A—Pyt) —v(d4,t). Il résulte de la définition de

N = N(4,t)que A > 0.
Nous allons montrer par induction sur #» que I’on a

(1), P, est t-dominant et v (P,, t) = v (4, t).

(i), v(1=Q, 1) =>4
(iiD), v (R, 1) >0 (4, ) + (n+1)

(iV)n v (Qn+ 1 Qn: t) > (n+2) )"

Remarquons que P, est de degré N et que le coefficient de o~ dans P,
est ay; d’ou

v(P,,t) = inf (v(a,-)+it) = ay + Nt = ipf(v(ai)+it) = v(4,1)

i=N

ce qui montre (7).
Comme P, est --dominant et que ’on a

4—-P,=(1-Q)P +R, degR, <degP,,
il résulte de la proposition 1.12 et de la définition de A que ’on a

U(I—Qoﬁt)>v(A—Poat) '—7)(1)(291:)> A
et V(R,, ) =v(A—P,, 1) >v(A4,1) + A

- ce qui montre (i), et (iii),.
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Comme I’'on a

A = QnPn + Rn = Qn+1Pn+1 + Rn-i—l = Qn+1(Pn+Rn) + Rn+1
d’ou
(1—Qn) Rn = (Qn+1_Qn)Pn + Rn+1 deg Rn+1 < deg Pn

1l résulte de (i), (ii), (ii1), et de la proposition 1.13 que

v(Qn+l_Qn>t) >v(1—Qn>t) + U(Rna t) _U(Pnat)>(n+2)/l>
et U(Rn+1,t)>7}(1—Qn,t) +U(Rn:t)>(n+2)i

ce qui montre (iv), et (iii), ;.
D’apres (i), v (R,, ) > v (4,t) = v (P,, ), donc

U(Pn—l-l)t) = U<Pn:t) = '(')(A,t).

Par ailleurs il est clair que P, est de degré N et que le coefficient de oV
dans P, est ay. Il en résulte. comme pour P,, que P,,; est t~-dominant,
ce qui montre (i), ;.

Enfin d’apres (i), et (iv),

V(1 =Qury, 1) = inf (0(1 = Q,, 1,0 (2 = Qusy, 1)) = 4

ce qui montre (i), ;.

Ceci acheve la démonstration des formules (i), ... (iv),.

On a pour tout ndeg P, = N, deg R, < deg A4, deg O, << deg A— N.
Les relations (iii), et (iv), montrent que les coefficients de R, tendent vers
0 et que les coefficients de P, et O, forment des suites de Cauchy. Comme K
est complet ces suites convergent. Soient P = lim P, et Q = lim Q,. On
aA=lm(Q,P,+R,) = QP.

Enfin il est clair que le coefficient de 0~ dans P est ay. Ceci joint au fait
que v (P, t) = limv (P, t) = v (A4, t) montre que P est f-extrémal et que
degP = N = N(4,1).

2) Effectuons la division euclidienne de P; par P. Comme deg P,
= deg P(=N(4,1))ona

P, =aP +R degR <degP, a€eKk.

Comme P est t-extrémal ceci entraine

N(R,t) < degR <degP = N(P,1).
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De la relation 4 = QP = QP on tire
QR =(Q,—Qa)P.
Comme 7> « on a en premier lieu
N(Qq,t) = N(A,1) = N(Py,1) =0
et par conséquent
N (Q; R, 1) = N(Q;, ) +N (R, t)= N (R,7) = N (Q,— Qa, 1) + N (P, 1).
Cette relation jointe a I'inégalité N (R, v) < N (P, t) entraine
N(R,t) = N(Q;—Qa,t) = — ©

cest-a-dire R = Q, — Qa = 0 ce qui démontre 2) .
3) Cela se fait comme en 1) en changeant I'ordre des produits.
4) Supposons qu’on ait PQ’ = QP avec deg P < deg P.
On a comme précédemment N (Q’, ) = O et
N(P,f) < degP <degP = N(P,1)

ce qui, joint a
N(P,t) + N(Q',t) = N(Q,1) + N(P, 1)

entraine P = Q0 = 0. On applique alors le lemme 2.2.

2.5. Exemples.
d
2.5.1. Soit K = k((x)) muni de la dérivation 0 = o (cf. §1.14). En
X

appliquant le théoréme précédent avec 1 = o« = —1, on obtient une décom-
position de 'opérateur différentiel 4 en un facteur fuchsien P et un facteur

O totalement irrégulier, c’est-a-dire qui ne posséde pas de facteur fuchsien
de degré non nul.

2.5.2. Soit L un corps valué ultramétrique. L’application P+ v (P, 0)
définie sur L [X] s’é¢tend a L (X) et définit une valuation sur L (X) appelée
valuation de Gauss. Le complété de L (X) pour cette valuation sera noté

i d
E (cf. [Dw] pour plus de détails). La dérivation 0 = — définie sur L (X)
, %




— 294 —

est continue et s’étend & £. On a o (0) = 0. Le théoréme précédent s’applique
donc pour ¢ < 0. (Le cas t = 0 a été considéré dans [Ro]).

2.5.3. Remarquons que les résultats du § 1 sont encore valables si les
coefficients des opérateurs différentiels sont pris non pas dans un corps
mais dans un anneau valué. Dans la proposition 1.13 pour pouvoir effectuer
la division euclidienne il faut bien sir supposer que le coefficient du terme
de plus haut degré de P est inversible dans I’anneau considéré.

En particulier la démonstration du théoréme 2.4 reste valide si I'on
suppose que le coefficient ay de 'opérateur A4 est inversible.

Cette remarque nous sert dans la situation suivante:

Soit L un corps valué ultramétrique complet algébriquement clos. Soit
S un sous-ensemble de L. Si f, définie sur S, est la limite uniforme sur S de
fractions rationnelles sans poles dans S on dit que f est un élément analy-
tique sur S. Supposons que S soit une union de classes résiduelles de L;
alors en utilisant les propriétés du paragraphe 1.3 on montre facilement
que pour une fraction rationnelle f sans poles dans S, inf o (f(x))

xeS

= v (f, 0). Il en résulte que ’anneau H (S) des ¢éléments analytiques sur .S
s’identifie 2 un sous-anneau fermé de E, défini en 2.5.2. On dit que fe E
est un élément analytique admissible (cf. [Dw]) s’il existe un sous-ensemble
S formé de toutes les classes résiduelles sauf un nombre fini (on dira que S
est standard) tel que f soit un élément analytique sur S. L’ensemble des
¢léments analytiques admissibles forme un sous-corps H de E qui n’est pas
complet pour la valuation. Mais pour chaque a € H, il existe un ensemble
standard S tel que a € H (S) et que a ne s’annule pas dans S (cette derniere
condition peut €tre réalis€ée car un ¢lément analytique sur un ensemble
standard n’a qu’un nombre fini de zéros). Alors ’anneau H (S) est complet

d

et a est inversible dans H (S). Pour la dérivation 0 = . de H, H(S) est
X

stable. Le théoréme 2.4 est donc encore valable pour les opérateurs a

coefficients dans H bien que H ne soit pas complet.

2.6. COROLLAIRE. Soit A€ Dy et soit t < a.

1) Il existe Q,Pe Dk, avec P t-extrémal et degP = N(4,t)
—n(A,t), telsque A = QP.

2) On a également une factorisation A = P'Q" ou P’ vérifie les mémes
conditions que P.

3) Ona D/DP ~ D/DP', D/|DQ ~ D/DQ’, D|DA ~ D/DP & D/DQ.
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Démonstration. D’aprés le théoréme 2.4 il existe L, B € Dy, avec B t-domi-
nant et N (B,t) = N(4,1¢) tels que 4 = LB.

Alors N (L, 1) = 0, donc N(L,s) = 0 pour s >t et n (L, s) = 0 pour
s > t. Par conséquent pour s > ona

N(B,s) = N(4,s) et n(B,s) =n(4,s).

Pour s assez voisin de 7,5 > 7, on a n (B, t) = N (B, s). Pour un tel s
il existe M, P € Dy, M s-dominant, tels que B = MPet N (M, s) = N (B, s).

On pose Q = LM. On a donc A = QP. Par ailleurs deg B = N (A4, 1),
deg M = N(B,s) =n(B,t) = n(4,t), et donc degP = N(A4,1)
—n(4,1).

Comme t < 5, N(M,t) = n(M, t) = deg M, d’ou

N(P,t) = N(B,f) = N(M,t) = N(4,t) —n(4,1)
n(P,t) = n(B,t) —n(M,t) =0

ce qui montre que P est z-extrémal.

2) Se démontre de méme et 3) se démontre comme le 4) du théoréme 2.4.
2.7. Notons @ I’anneau de valuation de K. Supposons que « (0) > O.
Alors la dérivation envoie ¢ dans son idéal maximal et par passage au
quotient induit la dérivation triviale sur le corps de restes k de K.

Nous noterons ¢ [0] 'anneau des ¢éléments de Dy dont les coefficients
sont dans 0. Soit A = Xa,0'e®[0] et A = X a;0" ek [0] son image.
Supposons qu’on ait une factorisation 4 = Q*P* dans k [0], nous cherchons
si cette factorisation se reléve dans O [0]. La démonstration classique de ce
lemme de Hensel dans le cas commutatif (cf. par exemple [Am] 2.5) ne se
généralise pas au cas des opérateurs différentiels. Nous allons donc suivre
la méthode de [Dw] § 6 qui interpréte I’équation 4 = QP en un systéme
d’équations différentielles non linéaires portant sur les coefficients de QO
et P. Nous allons donc commencer par étudier & quelles conditions un
systétme d’équations différentielles non linéaires ayant une solution dans
le corps résiduel a une solution dans 0.

Soit un systéme différentiel non linéaire de m équations a m inconnues a
coefficients dans @. Précisément posant

X=X, 0 X)), Y=Y 1. Y )1 <i<s

s

et X*= X' ... X.™ pour pe N™ soit




— 296 —

(2.7.1) F(X,Y,..,Y) = Y C

#,(vg)

SXEYSL Y

us (v

avec u, v; € N™, la somme étant finie, et avec C, , 5 € O™
Nous cherchons une solution dans 0™ de I’équation

(2.7.2) G(X) = 4o F(X,0(X),...,0"(X)) = 0.

Pour u € O nous appelons application tangente & G en u, 'application
L, de 0™ dans lui-méme définie par

(2.7.3) L,(z) = L,(zy,...,2,) = ii z; ;—;l (u, 0 (u),...)

Nous écrirons
L,(z) = A,(2) + B,(0(2)

m

ou 4,(z) = 2 z; — (u, ...). Nous utiliserons la méme notation A4, pour
i=1 i
désigner ’application de O™ dans lui-méme et la matrice qui lui est associée.
Par passage au quotient I’équation (2.7.2) devient

(2.7.4) G(X) = Z Cﬂ, (0) X” = 0
n

dont I’application tangente en u* € k™ est A,. définie par

m

(2.7.5) Ap(z) = Y z j—;(u*)

i=1

2.8. PROPOSITION. Soit o > 0. Soient F et G définies par les formules
(2.7.1) et (2.7.2). Soit u* € k™ une solution de l’équation réduite G (u*) = 0.
Supposons que [’application tangente réduite A, est inversible dans k™.
Alors u* se reléve de facon unique en une solution ue O™ de l’équation
G (u) = 0.

Démonstration. Soit n un relévement de »* dns 0™. Considérons le dévelop-
pement taylorien de G autour de 7

(2.8.1) Gn+X) =G + 4,(X) + B,(6(X)) + Q,(X). :
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On a A, = A,. D’aprés notre hypothése det (4,.) # 0, ceci signifie
que det (4,) est une unité de ¢ donc que 4, est inversible dans GL,, (0).

Posons # = n + w. Alors I’équation G (1) = 0 équivaut a

(2.8.2) w= —A, " (G +B,(0(W)+Q, (W) = g D(W).
On munit K™ de la norme (exprimée sous forme additive) définie pour
X = (x4, ..., x,) € K™ par v (X) = inf v (x,).

Notons que, comme Q, ne contient que des termes au moins quadra-
tiques en la variable et ses dérivées on a pour tous z, y € O™

v(Q,(2)) > 2v(z)
v(0,(2) =0, () =v(z—y) + inf (v(),2(2)) .
Comme G (1) = G (u*) = 0, on a v (G (1)) > 0. Choisissons A réel tel

que
0 < A < inf («,9 (G (1)) .

Soit U = {ze€0™;v(z) >4}. Nous allons montrer que ¢ est une
contraction de U. Puisque U est complet il en résultera par le théoréme du
point fixe que ’équation (2.7.2) posséde une solution dans U et donc que
I’équation (2.7.2) posséde une solution u qui est un relévement de u*.

1) @ envoie U dans lui-méme. En effet on a pour v (z) > A
v(@(2)) > inf (v(G (1)), v(B,(92)), v(Q,(2)) > inf (v(G(n)), v(2) + «,
20(2)) > 4.
11) @ est une contraction.

v(2(2) =2 () = inf (v(z —y) + e, v (z =) +inf (v (2), v (3)))
>v(z—y) + 4.

Montrons I'unicité du relévement. Soit #; un deuxiéme relévement de
u* solution de I’équation (2.7.2). On a v (u; —n) > 0. Il est toujours possible
de choisir 4 de sorte que 0 < A < v (u;—n). Alors u, — ne U et vérifie
(2.8.2). En vertu de l'unicité du point fixe d’une contraction on a
uy —n =u—ndouu = u

2.9. THEOREME. Soit o« > 0. Soit A€ O [X] de degré m + n. Supposons
que son image A dans k [X] se factorise sous la forme

L’Enseignement mathém., t. XXVI, fasc. 3-4. 20
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(2.9.1) A = Q*p*
ou P* est unitaire de degré n, Q* et P* étant premiers entre eux.

1) Il existe un reléevement unique Q,P de Q*, P* avec deg Q = m,
deg P = n, P unitaire, tel que

(2.9.2) A(9) = Q(3)P(9).

2) 1l existe également un unique relévement Q', P' vérifiant les mémes
hypothéses que Q et P tel que

(2.9.3) A(d) = P'(d) Q' (9).

3) Ona D|DP ~ D/DP’', D/DQ ~ D|/DQ’, D/DA ~ D/DP @& D|DQ.

Démonstration. L’équation (2.9.2) peut s’interpréter comme un systéme
de m + n équations différentielles portant sur les coefficients (d’ordre
<m — 1 et d’ordre <{m — 1 respectivement) de Q et de P, et (2.9.1)
représente alors le systéme réduit. Si £, désigne I’espace des polyndmes a
coefficients dans k de degré < m, l'application tangente réduite Ay« p«
s’Interpréte comme l'application de £,,_; X £,_, dans 2,,,,_

(U, V)= UP* + Q*V,

et cette application est inversible si et seulement si P* et O* sont premiers
entre eux (théoreme de Bezout, cf. [Ro] § 1.3).

2.10. Dans le cas « = 0, la démonstration précédente n’est plus valable
(car l'application z +— B, (0z) n’est plus forcément une contraction). Il
n’existe pas de démonstration valable pour tous les corps avec dérivation
donnant un résultat du type du théoréme 2.9 pour « = 0. On donnera
deux exemples de cette situation: I'un dans le cas K = k ((x)) (cf. 2.5.1),
I’autre dans le cas ol K est le corps considéré a ’exemple 2.5.2.

Nous allons établir maintenant un lemme de Hensel du type précédent

dans le cas K = k((x)) muni de la dérivation 0 = xd—(on a alors
X

« (0) = 0). Nous allons d’abord donner une nouvelle version du théoréme
2.8. Soient F, G et L, définies par les relations (2.7.1), (2.7.2) et (2.7.3).
Nous allons maintenant interpréter L, comme une m X m matrice a coeffi-
cients dans O [0].
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Pour u* € k™ on définit L. comme étant la m X m matrice a coeflicients
dans k [0] réduite de L .. Le i-j-coefficient de L. est donc

OF, s OF,
L w*,0,0... L (u*,0,0..)0".
7, ¢ ) + IZZI 2%, (u )

J

Notons que par passage au quotient, ¢ induit la dérivation triviale sur
le corps résiduel k, il faut donc distinguer entre un opérateur différentiel a
coefficients dans k et I’application qu’il définit dans k. Par contre les opé-
rateurs différentiels & coefficients dans k& commutent entre eux, on peut
donc définir det (L) € k [0].

2.11. LeMME. Soient nek[X] et s, entier tels que 7 (s) # O pour tout
5 > 5o. Alors m () réalise une bijection isométrique de la boule {a € k ((x));
v(a) =50} sur elle-méme.

Démonstration :

C’est évident puisque 7 (0) ( X a,x%) = 2 7w (s)a, x°.

S = s0 s = sg

d
2.12. PropoSITION. Soit K = k((x)) et 0 = X Soient F et G
X

définies par les formules (2.7.1) et (2.7.2). Soit neO% et posons m (9)
det (L) ek [0]. Soit s, entier >0 tel que pour tout entier s > s,,
n(s) #0. Silona v (G () > 5o, il existe un unique ue O™ solution de
[’équation G (u) = 0 tel que v (u—n) > s,.

En particulier soit u*ek™ solution de G u*) = 0. Soit = (d) =
det (L) €k [0]. Si © ne posséde pas de racines entiéres >0, il existe un
unique relevement u de u* solution de [’équation G (1) = 0.

Démonstration : Notre hypothése implique en particulier que = (0) n’est
pas le polynéme nul. Il existe donc une m X m matrice M A coefficients
dans k [0] telle que

ML, = n(0)I

n

ou 7 désigne la m X m matrice identité.
On a donc

ML, —n(3)I = xN

ol N est une matrice a coefficients dans 0 [0] (ici 0 = k [[x]] et x est
. Puniformisante canonique de X).
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Comme dans la proposition 2.8 on considére le développement taylorien
(2.8.1) de G, et 'on voit que I’équation G (u) = 0 peut s’écrire, avec
w=u-n,

(2.12.1) (0w = — (MG (n)+xN(w)+MQ,(w).

Soit U = {ze0™;v(z—n) >s0}. Il est clair que si we U le second
membre de (2.12.1) appartient aussi & U, et donc si ’on cherche une solu-
tion de 2.12.1 dans U, il est équivalent d’écrire (puisque d’apreés le lemme 2.11
7 (0) est inversible sur U),

(2.12.2)  w = @ (W) = g — () (MG () +xN (w)+MQ, (W) .

On vérifie facilement comme dans la proposition 2.5 que @ est une
contraction de U, ce qui montre que 1’équation (2.12.1) posséde une solu-
tion unique.

Pour la deuxiéme partie de la proposition il suffit de prendre un releve-
ment 7 quelconque de u* (par exemple # = u*) et de prendre s, = 1.

d
2.13. THEOREME. Soit K =k ((x)) et 0 = xd— . Soit AeO[X] de
X

degré m + n. Supposons que son image A dans k [X] se factorise sous la
forme

(2.13.1) A = Q*p*

o P* est unitaire de degré n.

1) Si Q* (X+s) est premier a P* (X) pour tout entier s > 0, il existe
un relévement unique Q',P' de Q*, P* avec deg Q = m, deg P = n,
P unitaire, tel que

(2.13.2) A() = Q(B)P ().

2) Si P*(X+s) est premier a Q* (X) pour tout entier s > 0, il existe
un relévement unique Q', P' de Q*, P* avec deg Q' = m, deg P’ = n,
P’ unitaire, tel que

A(0) = P'(9)Q'(9).

3) Si P*(X+s) est premier a Q*(X) pour tout seZ,P, Q,P', Q'
étant les polynémes différentiel définis précédemment on a

D/DP ~ D/DP’, D|DQ ~ D/DQ’, D/DA ~ D/DP & D/DQ .
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4) Soit s, entier >0 tel que pour tout entier s > s, Q* (X+s) soit
premier @ P*(X). S'il existe un relevement Q,P; de Q% P* avec
deg O, = m, deg P, = n, Py unitaire et v (A4 (0) — Q4 (0) P (9), 0) > s,
alors il existe Q, P e D uniques avec deg Q = m, deg P = n, P unitaire,
V(P~P1,0) >50,0(Q~0Q1,0) =50 ef 4= QP.

On a un énoncé similaire pour une factorisation A = P'Q’.

Les théorémes 2.9 et 2.13 sont les équivalents du classique lemme de
décompositions pour les modules différentiels dont on trouvera un énoncé
précis dans [Le] § 2.

Démonstration :

1) L’équation (2.13.2) peut s’interpréter comme un systéme de m + n
équations différentielles portant sur les coefficients (d’ordre <m — 1 et
d’ordre <<n — 1 respectivement) de Q et P, et (2.13.1) représente le systéme
réduit. 1l s’agit de montrer que le polyndme = (0), déterminant de Ly« ps
ne s’annule pas sur les entiers >0.

Or, si 'on note £,,1’espace des polynémes différentiels de degré <<m,
a coefficients dans & ((x)), 'application tangente L o+, px S’Interpréte comme
Papplication de #,,_{ x #,_, dans 2, ,,_

(U0, V(@) U () P*(d) + 0*(d) V(9).

Si
n m m—1 n—1
P* = Z piaia Q* = Z Qiai: U = Z u’iai: V = z viai ’
i=0 i=0 i=0 i=0
on a

n—1 i

m—1 n m
UP* +Q*V = Y Y up;d™/+ Y g, I (;) 0" (v)) 071
i=0 j=0 Jj=0 J=0 1=0

Nous n’expliciterons pas la matrice de Lp« o« (qui a ses coefficients
dans k [0]) mais nous observerons que si dans cette matrice nous faisons
0 = 0 alors on obtient la matrice de I’application

(UX), V(0) = U(X) P*(X) + 0* (X) V(X)
= UX)P*(X) + V(X) 0* (X)

dont on a observé dans la démonstration du théoréme 2.9 qu’elle était
~ inversible si et seulement si P* et Q* étaient premiers entre eux.
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En résumé = (0) # O si et seulement si P* (X) et Q* (X) sont premiers
entre eux.
De la relation

(0 +95)v = _z (D) (9 +5) (v) 0!

valable pour tout v ek ((x)), tout entier i >> 0 et s entier, on voit que la
matrice L ps (x), g+ (x+5s) (0) de 'application

m—1 n
(U@, V@)~ U@P*@0) +0* @+ V(@) = § % upd™
n—1 n—1 i J=0
T -Z’o % 'Z’O IZO (;.)(a_*-s)l(vj) oIt

est Lp* (X), Q*(X) (5 + S).

Par conséquent d’aprés ce qu’on vient de voir, 7 (s) # O si et seulement
si P* (X) et O* (X+5) sont premiers entre eux.

Il suffit alors d’appliquer la proposition 2.12.

2) se démontre de méme.

3) Supposons quon ait P; Q' = Q, P avec degP; < degP. Si
P, # 0 (et donc Q; # 0) on peut se ramener au cas v (P, 0) = v (Q,, 0)
= 0. En passant au corps résiduel on obtient P; Q* = Q, P* avec
deg P, < deg P* et P; # 0Q,; # 0 ce qui contredit I’hypothése que
Q* et P* sont premiers entre eux.

On applique alors le lemme 2.2.

4) Se démontre comme 1).

2.14. Applications.
2.14.1. Soit A€ D avecv (4,0) = 0; on a

deg A = N(4,0).

Si A n’est pas fuchsien, c’est-a-dire si deg A < deg A4, en appliquant le
théoréme 2.12 avec P* = A et Q* = 1, on obtient une factorisation de 4
en un opérateur fuchsien et un opérateur totalement irrégulier (cf. 2.5.1),
ce qui nous redonne une démonstration différente du résultat 2.5.1.

2.14.2. Supposons maintenant que k est algébriquement clos de caracté-
ristique 0.
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Soit Ae D avec v(4,0) = 0, de degré n et supposons A4 fuchsien.
Alors A (qui est le polynome indiciel de 4) est de degré n. Notons 4 ... 4,
ses racines de telle sorte que si pour i < j A; — A; est entier, alors cet entier
est positif. Appliquons le théoréme 2.12 avec P*(X) = (X—4Ay) et
0% = c(X—41,)...(X—21,). On aura alors une factorisation 4= 4; P,
ou P, reléve P* et A, reléve Q*. Par induction sur le degré de 4 on voit
que Pon al a factorisation 4 =aP,..P;, avec P, =0 —n; et
n — Aexk [[x]].

On peut retrouver ce résultat de fagon différente. Il est bien connu (cf.
[In] § 16.1) que I’équation Au = O posséde une solution formelle u = x*1 v
avec v ek [[x]]. Alors 4 se factorise sous la forme 4 = 4, P, avec

0w ot Ton a 0(u) _ i+ 8_(7)2 — é@ ex k [[x]].
u U v ¢

P, =0

2.15. Nous utilisons les notations du paragraphe 2.5.2. Si L désigne le
corps résiduel de L, alors le corps résiduel de E s’identifie & L(X). Par

: . d L
passage au quotient la dérivation ¢ = — sur E donne la dérivation s
X X

sur L(X) qui n’est pas triviale. Nous noterons, pour m € N, 2, I'espace
des polynoémes différentiels de degré <Cm a coefficients dans L(X). Nous
notons encore @ 'anneau de valuation de E.

THEOREME. Soit A€ 0 [0] de degré m + n. Supposons que son image
A dans L(X)[0] se factorise sous la forme

Z=Q*P*

o P* est unitaire de degré n.
Alors si I’application

(U, V)~ UP* + Q*V

de Py X P,y dans P, ., , estinjective,il existe un relévement unique

Q,P de Q*P* avec deg Q = m,degP = n, P unitaire, tel que A = QP.

On trouvera la démonstration dans [Dw] § 6. On montre de plus que si

les coeflicients de A sont des éléments analytiques admissibles (cf. §2.5.3)
- alors les coefficients de P et Q le sont également.
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3. APPLICATION AUX POINTS SINGULIERS IRREGULIERS

Dans ce paragraphe nous supposons que la valuation de K est discréte
et que le corps résiduel est de caractéristique O.

L’exemple le plus important est celui ou K = k ((x)) muni de sa valuation
x-adique avec k de caractéristique O.

Donnons un autre exemple. Soit L un corps valué de caractéristique 0
muni d’une dérivation §, par exemple L = k (y) ou L = k(( y)) avec k de

: d : :
caractéristique 0 et 6 = T Prenons K= L ((x)) muni de sa valuation
y
x-adique. On mettra sur K P'unique dérivation continue ¢ telle que 0 (a)
= 0 (a) pour ae L et 0 (x) = 1. (Nous ignorons si cet exemple présente
de l'intérét).

3.1. LeMME. Soit K valué complet muni d une valuation discréte et d’une
dérivation 0 continue, ayant un corps résiduel de caractéristique 0. Soit L
une extension algébrique de K. Alors la dérivation s’étend d’une fagon
unique a L et l'on a

(3.1.1) 0y (8) = og ().

Rappelons que la valuation de K s’étend aussi de facon unique a L,
car K est complet.

L’intérét de ce lemme est de montrer que si P € Dy est fuchsien en tant
qu’élément de D, il est également fuchsien en tant qu’élément de Dy.

Démonstration. 1l est bien connu que la dérivation s’étend de fagon unique.
Tout ce qu’il faut montrer est la relation (3.1.1).

Si PeK[X], P=2Xa; X', on écrira P' =ZXia, X' et 0(P)
= X0 (a) X"

Par récurrence on peut se ramener au cas ou il n’y a pas d’extension
algébrique de K entre K et L. Soit n = [L:K]. Soit ue L\ K. Comme la
valuation de K est discréte, il existe a e K'tel quev (u—a) = sup v (a—b).
Posons w = u — a. Ak

Si L n’est pas ramifi€ sur K, il existe b € K tel que w = bz et v (z) = O.
Soient L et K les corps résiduels de L et K. Par construction de z on a
L =K(z). De plus [L:K] = [L:K]. Soit P e K [X] le polyndéme minimal
unitaire de z. Alors P a ses coefficients dans ’anneau de valuation de K.
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Comme P (Z) = 0, et que P n’est pas le polyndme nul, on en déduit aussitot
que P est de degré n etest irréductible sur X. Comme K est de caractéristique
nulle, P est premier avec P’, et donc P’ (z) = P’ (2) # 0, soit v (P’ (z)) = 0.
Par ailleurs si P = X g; X*, on a clairement v (0 (P) (z)) > inf (v (a)) + @)
= o. Comme

0(z2)P'(z) + 0(P)(z) =0
on en déduit v (4 (2)) >v (0 (P) (2))—v (P’ (2)) >a = a + v (z). Comme

d(w)w = d(b)b + 8(2)/z

on a alors

v (0 (w)) — v (w) > inf (v (0 (b)) —v(b), v(8(2)) —v(2)) > «
et enfin, puisque v (1) = v (@) <v (W) et d W)/u = 0 (a)/u + 0 (W)/u

v (0 (u)) —v (u) > inf (v (0(a)) —v (u),v (0 (w)) —v (u))
> inf (v (0 (@) —v (a), v (0 (W) —v (W)) > o .

1
Si L est ramifiée, alors L est totalement ramifié et I'(L) = — T (K)
n

ou I'(L) désigne le groupe des valeurs de L. Par construction de w,

I' (L) est engendré sur I' (K) par v (w), ce qui entraine que, P = X"
n—1

+ X a; X'eK[X] étant le polyndme minimal unitaire de w, on a
i=0

nw(w) =v(a,) <v(ag) +iviw) 1<i<n-—1.

n—1
Mais alors, puisque wP’ (w) = nw" + X ia; w', on a
i=1

v (WP’ (W) = nv(w) = v(a,)
car v (n) = 0, K étant de caractéristique 0. Par ailleurs

v (0 (P)(w)) > inf  (v(a)+a+iv(w) = v(a,) + «.

0=i=n-1
Comme 0 (w) P’ (w) + 0 (P) (w) = 0, on en déduit

v(0(W) —v(w) = v (0 (P) (w)) —v(WP' (W) > «.
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3.2. THEOREME. On suppose que la valuation de K est discréte et le corps
résiduel de K de caractéristique 0. Soit Pe€ Dy, P # 0. Il existe une
extension finie L de K, des n,€ L(1<i<q) etdes P;e D fuchsiens tels
qu 'on ait

1) P(0) = P1(0—ny) ... P, (0—1,)
2) Dy/D P (0) ~ @ Dy/Dy P;(0—n,).

3) (Unicité). Dans la décomposition précédente on peut supposer que
les P; ne sont pas constants et que v (n;—n;) < a pour i # j. Alors, si
[’on a, dans une méme extension L une deuxiéme décomposition P (0)
= P (0—&)) ...P.(0—E,) ou les P & vérifient les mémes conditions
que P, n;, ona r =gq etil existe une permutation o de l’ensemble
[1,2,..,q] telle que v (n;—C,0)) = et

D;/D;P;(0—n;) ~ DL/DLP;(i) (90— fa(i)) 1<i<g.

Démonstration :

1) et 2) Notons ¢z, = a et ¢;,,i = 1, ..., les valeurs exceptionnelles <«,
associées a P. Soit x une uniformisante de K. On appelle rang de Poincaré-
Katz r(P) = (a— inf ¢,)/v (x). Nous allons démontrer le théoréme par

i>~0
une double récurrence sur (deg P, r (P)) ordonnés par l'ordre lexicogra-
phique; la récurrence commence soit a deg P = 1 ou le résultat est évident.
soitar (P) = 0ouil est aussi évident puisque cela signifie que P est fuchsien.
(La récurrence ne porte sur r (P) que pour les valeurs entic¢res de r (P)).

D’aprés le théoréme 2.3 et le corollaire 2.5 on peut se ramener au cas
ol P est ¢;-extrémal avec ¢; < « (et alors r (P) = (x—14)/v (x)). Deux cas
peuvent se présenter.

Cas 1. t; n’appartient pas au groupe de valuation de K (c’est-a-dire
r (P) n’est pas entier). Soit L I’extension de K déterminée par le polyndéme

P (X) et soit 5 € L une racine de P(X). Ona t; =v(y) = sup v (n—2z).
zeK

Comme le corps résiduel de K est de caractéristique nulle, d’aprés Ax [Ax],
il existe un conjugué 5’ de 5 sur K avec v (y'—n) = t;. Soit R (X)
= P (X+n). Le polynéme R s’annulant en O on a n (R, ¢;) > 0; comme
n' —n est racine de Retv(n'—n) =t,, ona N(R,t;) — n(R, t;) > 0.
Il résulte alors de la proposition 1.11 que lon a n(P(@+n),t,)
=n(R,t) >0 et N(P@+n),t) —n(P@+n),t;) = N(R, t,)
— n(R,n) > 0; le corollaire 2.5 nous permet alors d’abaisser le degré
de P.
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Cas 2. t, appartient au groupe de valuation de K (c’est-a-dire r (P) est
entier). Soit L, I’extension de K déterminée par le polyndme P (X) et soit
L P’extension maximale non ramifiée de K dans L. Si £ est une racine de
P (X) (appartenant a L,) il existe n e L tel que v (E—n) > v ({) = v (n)
= t;. Posons R(X) = P(X+#n). On a alors n (R, t;) > 0 et d’apres la
proposition 1.11 n (P (0+mn), t;) > 0. Si n(P(@+n), 1) < N(P(8+n), ty)
on peut abaisser le degré de P grice au corollaire 2.5. Si n (P (0+mn), t1)
= N(P(0+n), t;) alors #; n’est pas exceptionnel pour P (d+n) et I'on a
r (P (@+m) < r(P(9)). L’hypothése de récurrence nous permet alors de
conclure.

3) Commengons par quelques remarques qui découlent directement
des définitions et de la proposition 1.11. Soit P € Dy, fuchsien (c’est-a-dire
¢-dominant). Si v () > « alors P (0+#) est également fuchsien (car P (0)
et P (0+n) ont méme fonction de valuation pour t < «). Siv (n) < «, alors
P (0+n) est v (n)-extrémal (en effet P (X) a-dominant signifie que toutes les
racines de P (X) dans la cloture algébrique de K sont de valuation > o,
alors R(X) = P(X+#n) a toutes ses racines de valuation v () ce qui
entralne que R est v (y)-extrémal et donc P (0 +1#) aussi d’aprés 1.12).

Soit alors P le polyndéme de I’énoncé et P (0) = P, (0—n4) ... P, (0—n,)
une de ses décompositions comme en 1). Soit yeL. Si v(n—n;) > a,
P; (0+n—n,) est fuchsien et N (P; (0+#n—n,),«) = deg P;. Siv (n—1,) < «,
P, (0+n—n;) est v (n—n;)-extrémal et N (P; (0+n—n,),«) = 0. D’aprés le
théoréme 1.6 on a alors N (P (0+n),a) = X  degP,

v (n-n;) >a
Démontrons 3). II est clair que dans la décomposition 1) on peut sup-
poser les P; non constants. Pour montrer que, I'on peut supposer v (;— 1 J-)
< a pour i # jon va procéder par induction sur le degré de P. D’aprés 1)
il existe # € L (par exemple n = 5,) tel que N (P (0+n), o) # 0. D’apres
le théoréme 2.4 on a une factorisation P (0+#%) = P’ (0) Q (8+n) avec
P’ fuchsien et N (Q (0+1n),«) = 0, et de plus on a

Dy/D,P(0) ~ D;/D, P (d+ny) ®@D./D;Q(0)
deg O < deg P. Si maintenant dans la factorisation de O,
Q@) = 0:(0—&y) ... 0,(0-¢&)

avec v (§;—¢;) < apouri # jon avait un indice i pour lequel v (£,— 1) > «,
alors on aurait N(Q (0+n),a) = N(Q (0+¢), «) = deg Q; > 0 ce qui
donne une contradiction.




— 308 —

Considérons maintenant une deuxiéme décomposition P (0)
=P; (0—¢&;) ... P, (0—¢). Alors N(P(0+¢)),a) = deg P;. S’iln’y avait
aucun indice i tel que v ({;—n;) >« on aurait, puisque P (0+¢))
=P, (0+&—ny) ... P, (0+&,—n,), N(P(O+E&),a) = 0 ce qui est une
contradiction. Il y a donc un 5; avec v ({;—n;) > « et cet y; est évidemment
unique. Par suite de 'unicité du facteur fuchsien établie au théoréme 2.4 on a
DL/DLPJ,'(a): Dy/Dy P;(0+&;—n) et donc Dy /D P; (0—¢))
~ D;/Dp P;(3—n)).

3.3. Perturbations.

Nous nous limitons désormais au cas K = k ((x)) avec k de caracté-
ristique 0. Pour simplifier nous supposerons k algébriquement clos. Nous

prenons la dérivation ¢ = x — . Alors o = 0.
X

Si P est fuchsien et unitaire, alors P a ses coefficients dans ’anneau de
valuation 0 de K. Le polynéme réduit P vu comme élément de k [ X] s’appelle
le polyndme indiciel. On a bien sir deg P = deg P.

Soit Pe Dg. Soit N = N(P,0). Alors v (ay'P,0) = 0, c’est-a-dire
ay' P e 0 [0], par réduction on voit que ay* P est le polyndme indiciel de
son facteur fuchsien (rappelons qu’on peut factoriser P a gauche ou droite,
les polynémes différentiels ainsi obtenus ne sont pas les mémes mais ils
ont méme polyndéme indiciel). Il en résulte immédiatement que si pour
P, Qe Dy on a v(P—Q,0) > v(P,0) alors les facteurs fuchsiens de P
et O ont méme polynome indiciel.

THEOREME. Soit P e Dg; soient to, = 0>ty > ..>t, les valeurs
exceptionnelles associ¢es a P, posons s, = N(P,t)—n(P,t;) (on a
s; > 0).

1) Soit Q€ Dg, avec deg Q = deg P, vérifiant
(3.3.1) v(P—Q,t) >v(P,t) —sit; 0<<i<r.

Soit P(0) = Py (0—ny) ... P, (0—n,) une décomposition de P, avec
P.e D, fuchsiens et n; € L vérifiant v (n;—n;) <0 pour i # j,L =k ((xl’p))
étant une extension algébrique de K. Alors Q admet la décomposition

Q(0) = Q1 (0—=n1) ... 0, (=1,

ot les Q;€ D; sont fuchsiens et Q; et P; ont méme polynéme indiciel.
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2) Soit m le plus grand entier >0 tel qu’il existe deux racines A et u
d’un méme polynéme indiciel d’un des opérateurs fuchsiens P; vérifiant
I/l — ul =m. Si Qe Dy, avec deg Q = deg P, vérifie

(3.3.2) 2(P—0,1) >0 (P,t) —st; + m  0<i<r

on a
Dg/DgQ =~ Dy/DgP .

3) Si Qe Dy vérifie (3.3.2), il existe un sous-Dg-module N de
Dy/Dy Q tel que
Dg/DxQ ~Dg/DgP @ N .

Démonstration :

1) P; (0) est le facteur fuchsien de P (9+#;). Ce que I'on doit vérifier
est que Q (0 +1;) posséde un facteur fuchsien qui a méme polyndme indiciel
que P;. 11 suffit pour cela que I'on ait

(3.3.3) v(P(0+n)—Q(8+n,0) >v(P(d+n,),0).

Siv (y;) >0, (3.3.3) équivaut a la condition (3.3.1) pour i = 0.
Siv (n;) <0, alors v (17;) est une valeur exceptionnelle, soit v (;) = ¢;.
Mais alors en vertu des propriétés de la fonction de valuation

(3.3.4) v(P(6+nj)—Q(5+nj),O) >v(P(0+n)—Q(0 +1,), t;)
=9 (P(0)-0(d),1,).

Par ailleurs, on a n (P (3+7 D 1) <s; (car cette inégalité est vraie dans
le cas commutatif) d’ou

(3.3.5)  v(P(0+1p,0) <o (P(@+n),1,) — tn(P(d+1)), ;)
<v(P(d), 1) = t;5;.

La conjonction de (3.3.1) (3.3.4) et (3.3.5) nous donne (3.3.3).
On a donc les facteurs de Q: Q4 (0—1n,) ... Q,(@—n,). Comme

q

q
deg Q = degP = deg P, = ) degQ;
i=1

i=1

il n’y a pas d’autres facteurs.

2) Pour déterminer complétement D,/D, P il faut déterminer les F
Dy/Dy P; (0—n;). Or d’aprés la théorie de Fuchs si
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(3.3.6) v(P;(0)—0Q;(0),0) > m
onaD;/D, P; ~ D;/D; Q;. Mais comme, si I’on a choisi P, et Q; unitaires,

v (P;(8)~0Q;(9),0) =0 (P(0+n,) -0 (0+n,),0)

grice a (3.3.4) et (3.3.5) on voit que (3.3.2) entraine (3.3.6). Par conséquent
ona D;/D; P~ D,;/D; Qetdonc Dg/Dy P ~ Dg/Dg O.

3) Soit L une extension de K ou I’on peut factoriser P et Q. Le raisonne-
ment précédent nous montre qu’on a

0(0) = Q,(0—mny)...Qu(0—n,) Q' ()
et D,/D, O = @ D,/D; Q,(0—n;,) @ D/D; Q'. (Comme on n’a pas

fait I’hypothése deg P = deg Q on n’a pas nécessairement Q' constant).
D’aprés 2)

D;/D; P ~ @ D, /DP;(0—n;) =~ @ D;/D;, Q;(0—n;)

D;/D;, Q ~D;/D;P @ Dy/D;, Q" .
Mais comme D;/D; Q ~ Dg/Dy O ® L et D;/D, P~ Dg/DyP ® L,
K K

la décomposition précédente provient d’une décomposition du Dg-module
Dy/ Dy Q.
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