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(i) = (ii): SiP(g") =0, alorsa # O0Oetg’ = —a~'b. Or n(P) = PP
= (aX+b) (@X+b) = n(a) 4_,-1, mod 4,.

Or —a~'b =gq' et 4, = 4,, donc n(P) = 0 mod 4,. Donc 4, divise
n(P) dans K [X].

(i) = (iii): évident.

(iii) = (i): On a n(P) = (aX+b)(aX+b)mod4, Si a =0, alors
n(P) = n(b) mod 4, donc n(P)(q) = n(b) # 0. Ceci est contraire a
Phypothése. Donc a # 0. Par suite on an (P) = n(a)4_, .4, mod 4,.
Comme n(P)(q) =0,ona 4__,_4,(q) = 0; donc 4___;, = 4, et ainsi
P(—a 'b) = 0. O

III. QUELQUES CONSEQUENCES DU THEOREME

COROLLAIRE 1. Supposons que H soit le corps des quaternions classiques
sur le corps R des nombres réels. Alors, pour tout polynome P de H [X]
non constant, il existe un quaternion q de H tel que P (q) = O.

Démonstration. On peut supposer que P n’a pas de racines dans R.
Alors, d’aprés le lemme 1, n (P) n’a pas de facteur du premier degré dans
R [X].

Soit 4 un polyndme irréductible de degré 2 dans R [X], divisant #n (P).
Un tel 4 existe puisque degré n(P) = 2 degré P > 2. Or on sait qu’il
existe un quaternion ¢ tel que 4, = A4 et le théoréme nous dit qu’il existe
un conjugué g’ de g tel que P(¢’) = 0. [

C’est le résultat (i) de Niven.

COROLLAIRE 2. Soit H un corps de quaternions généralisés de centre K.
Un polynéme P de H [X] admet une infinité de racines si et seulement s il
existe un polynome irréductible A de degré 2 de K [X] et un quaternion q
telque A = A, et A divise P.

La démonstration est une conséquence triviale du lemme 2 et du
théoréme. Si K = R, tout polyndme irréductible de degré 2 est le polynéme -
caractéristique d’un quaternion g, d’ou le résultat (ii) de Niven.

COROLLAIRE 3. Soit H un corps de quaternions généralisés de centre K.
5i le polynéme P de H[X] n’a qu’un nombre Jini de racines, celui-ci est
inférieur ou égal au degré de P.
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Démonstration. D’aprés le théoréme, & tout quaternion g tel que 4,
divise n (P), correspond un conjugué ¢’ de q tel que P (¢”) = 0. Comme P
n’a qu’un nombre fini de racines, ¢’ est unique d’aprés le lemme 2. Comme
degré n (P) = 2 degré P et degré 4, = 2, on constate que P a au plus
degré P racines distinctes et celles-ci sont deux a deux non conjuguées. []

Définition. Soit P un polynéme non nul de H [X] n’ayant qu’un nombre
fini de racines, et soit ¢ un élément de H. On définit la multlphclte de ¢
par rapport a P (notée M, (¢)) de la maniére suivante:

M) 0 si P(q) #0,
M= Max {keN |4 divise n(P)} si P(q) =

COROLLAIRE 3'. Si PeH[X] n’a qu'un nombre fini de racines, |
91> >4, € n = degré P, alors ,

'Zl M P (ql) < n
Si, de plus, K =R et H estle corps des quaternions classiques, alors

Z M,(q) = n et on peut dire que P a exactement n racines (avec

multiplicités ).

Démonstration : évidente.

On a déterminé I’ensemble des racines d’un polyndme ainsi que leurs
multiplicités. Il reste & déterminer les polyndmes ayant un ensemble de
racines données avec leurs multiplicités.

PROPOSITION. Soient H un corps de quaternions généralisés de centre K,
d1s ---» 4 des quaternions deux a deux non conjugués, ni,..,'n, des entiers

>1 tels que Y. n; = n. On suppose, de plus, que les q; ne sont pas
i=1 .

dans K, ce qui ne restreint pas la généralité, gridce au lemme 1.

a) Si pour tout i, 1 <<i<r, ona n; =1, alors il existe un unique
polynéme unitaire de degré n de H [X], qui ait pour seules racines les q;
avec 1 <i<r. o

b) S’il existe un i, 1 <i <r, tel que n; > 1, alors il existe une infinité
de polynomes unitaires P de H [X] de degré n, tels que P ait pour seules
racines les q;, 1 <i < r, avec pour multiplicité n,.
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Démonstration.

a) Unicité. Si P et P, sont deux tels polyndmes unitaires, P; — P, est
un polynéme de degré inférieur ou égal a2 n — 1, qui admet » racines
deux 2 deux non conjugués, g, ..., gp. SiPy — P, # 0,4, ® ... ® 4,.
divise n (P, —P,). Donc degré n (P, —P,) > 2n. Or degré n (P,—P,)
<2(n—1),donc Py = P,.

Existence. Remarquons que dans ce cas on a n = r. On procéde par
récurrence sur l'entier n. Le cas n = 1 étant trivial, soit Q un polynome
unitaire de degré m — 1 admettant gy, ..., ¢,—y comme seules racines,
les ¢;1 <i<n— 1 étant deux & deux non conjugués. Alors si g, n’est
conjugué a aucun des ¢, 1<i<n—1, on a Q(q,) # 0. Posons

u= 0 ¢ Q@)"
et

P(X) = (X-u)QX).

Par définition de la multiplication dans H[X] on a P(q) = Q(q) " ¢
— u Q (g) pour tout quaternion q et I’on en déduit:

P(q)—Opourl <n-1
et P(q,) = Q(qn) 4, — (Q(a,) 9. Q (3,)” 1) Q (g, = 0.

Ainsi P est un polynéme unitaire de degré » qui admet g¢,, ..., g, comme
racines. Montrons que P n’a pas d’autres racines. D’apreés la partie (ii) du
théoréme, 4,, divise n (P) pour tout 7, 1 <<i <n; comme degré n (P) =

on a

n(P) = f[ 4, .

Si g est une racine de P, 4, divise n (P) d’aprés le théoréme et donc il existe
i, 1 <i<ntel que q et g; soient conjugués. Si ¢ # ¢;, on sait d’apres le
lemme 2 que 4,, divise P mais alors A;i divise n (P) donc il exite j # i
tel que 4 G = 4,. donc g; et g; sont conjugués, ce qui est contraire a ’hypo-
thése. On a donc nécessairement g = ¢;. Le polynome P ainsi construit
n’a pas d’autres racines que les g;, 1 <<i <n

b) On généralise tout d’abord la définition de la multiplicité d’une racine
d’un polynéme: Si Fe K [X] et g € H, posons

mp(q) = max {keN|(X —¢)* divise F dans K(q)[X]}.

Si P est un polyndme quelconque de H [X], on écrit P = P, F comme
en I, Résultat 4. Alors, pour tout quaternion g de H, on définit la
multiplicité de ¢ par rapport 3 P comme étant I’entier
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Mp(q) = Mp,-(q) + mp(q).

On constate que ceci est une bonne généralisation de la définition
précédente.

Il faut alors démontrer deux résultats intermédiaires.

LEMME 3. Soient Pe H [X] et ue H. Onpose P,(X) = (X—u) P (X).
Alors : ‘

@) n(P,) = n(P)4,; |

(i) si q est un quaternion tel que P(q) # 0 et P,(g) =0, ona
u=P@qgP(@ "

(i) si g n’est pas conjugué de u, ona Mp(q) = Mp, (q).

Démonstration. (i) et (ii) sont évidents. Pour (iii), on constate que si q |
n’est pas conjugué de u, alors (P (g) = 0) <« (P,(q) = 0), d’oui le résultat-
cherché d’aprés (i) et la définition de la multiplicité. [

LemMME 4. Soit un polynéme P de H [X], admettant une racine q ¢ K |8
dans H, telle que A, ne divise pas P (i.e. P(q") # O pour tout conjugué q’
de q distinct de q). Alors :

() si q" estun conjugué de q distinct de q, la quantité P (q’) q’ P(q’)~"
= q est une constante ne dépendant que de P et de q;

(i) si u est un conjugué de q distinct de q, alors Mp (q) = Mp(q)
+ 1.

Démonstration. (i) Posons u; = P(q;)q;P(g;)"',i=1,2,0u q, et q,
sont deux conjugués de g distincts de g. Alors P,, admet g et g; comme
racines. Donc, d’aprés le lemme 2, on a P, (¢') = P,,(q") = 0 pour tout
conjugué g’ de g, mais alors u; P(q’) = u, P(q’). D’ou l’on tire Uy = Uy |
en prenant ¢’ # gq. |

(if) Si u est un conjugué de ¢ distinct de g, alors P, (¢") # 0 pour tout
conjugué g’ de g, distinct de g. Comme, d’autre part,n (P,) = n (P) 4,
= n (P)4, (Lemme 3 (1)), on a Mp (q) = Mp(g) + 1, d’aprés la défini-
tion de la multiplicité. - [

~

Le quaternion g n’étant pas dans X il a une infinité de conjugués u # q.
La partie a) de la proposition et les lemmes 3 et 4 permettent alors d’achever
la démonstration de b) par récurrence.
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